Do you want to publish a course? Click here

Joint Network based Attention for Action Recognition

87   0   0.0 ( 0 )
 Added by Yemin Shi Shi
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

By extracting spatial and temporal characteristics in one network, the two-stream ConvNets can achieve the state-of-the-art performance in action recognition. However, such a framework typically suffers from the separately processing of spatial and temporal information between the two standalone streams and is hard to capture long-term temporal dependence of an action. More importantly, it is incapable of finding the salient portions of an action, say, the frames that are the most discriminative to identify the action. To address these problems, a textbf{j}oint textbf{n}etwork based textbf{a}ttention (JNA) is proposed in this study. We find that the fully-connected fusion, branch selection and spatial attention mechanism are totally infeasible for action recognition. Thus in our joint network, the spatial and temporal branches share some information during the training stage. We also introduce an attention mechanism on the temporal domain to capture the long-term dependence meanwhile finding the salient portions. Extensive experiments are conducted on two benchmark datasets, UCF101 and HMDB51. Experimental results show that our method can improve the action recognition performance significantly and achieves the state-of-the-art results on both datasets.



rate research

Read More

70 - Jialin Wu , Gu Wang , Wukui Yang 2016
We propose a novel deep supervised neural network for the task of action recognition in videos, which implicitly takes advantage of visual tracking and shares the robustness of both deep Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). In our method, a multi-branch model is proposed to suppress noise from background jitters. Specifically, we firstly extract multi-level deep features from deep CNNs and feed them into 3d-convolutional network. After that we feed those feature cubes into our novel joint LSTM module to predict labels and to generate attention regularization. We evaluate our model on two challenging datasets: UCF101 and HMDB51. The results show that our model achieves the state-of-art by only using convolutional features.
We propose a new spatio-temporal attention based mechanism for human action recognition able to automatically attend to the hands most involved into the studied action and detect the most discriminative moments in an action. Attention is handled in a recurrent manner employing Recurrent Neural Network (RNN) and is fully-differentiable. In contrast to standard soft-attention based mechanisms, our approach does not use the hidden RNN state as input to the attention model. Instead, attention distributions are extracted using external information: human articulated pose. We performed an extensive ablation study to show the strengths of this approach and we particularly studied the conditioning aspect of the attention mechanism. We evaluate the method on the largest currently available human action recognition dataset, NTU-RGB+D, and report state-of-the-art results. Other advantages of our model are certain aspects of explanability, as the spatial and temporal attention distributions at test time allow to study and verify on which parts of the input data the method focuses.
In this paper, we propose a novel hand-based person recognition method for the purpose of criminal investigations since the hand image is often the only available information in cases of serious crime such as sexual abuse. Our proposed method, Multi-Branch with Attention Network (MBA-Net), incorporates both channel and spatial attention modules in branches in addition to a global (without attention) branch to capture global structural information for discriminative feature learning. The attention modules focus on the relevant features of the hand image while suppressing the irrelevant backgrounds. In order to overcome the weakness of the attention mechanisms, equivariant to pixel shuffling, we integrate relative positional encodings into the spatial attention module to capture the spatial positions of pixels. Extensive evaluations on two large multi-ethnic and publicly available hand datasets demonstrate that our proposed method achieves state-of-the-art performance, surpassing the existing hand-based identification methods.
418 - Lili Meng , Bo Zhao , Bo Chang 2018
Inspired by the observation that humans are able to process videos efficiently by only paying attention where and when it is needed, we propose an interpretable and easy plug-in spatial-temporal attention mechanism for video action recognition. For spatial attention, we learn a saliency mask to allow the model to focus on the most salient parts of the feature maps. For temporal attention, we employ a convolutional LSTM based attention mechanism to identify the most relevant frames from an input video. Further, we propose a set of regularizers to ensure that our attention mechanism attends to coherent regions in space and time. Our model not only improves video action recognition accuracy, but also localizes discriminative regions both spatially and temporally, despite being trained in a weakly-supervised manner with only classification labels (no bounding box labels or time frame temporal labels). We evaluate our approach on several public video action recognition datasets with ablation studies. Furthermore, we quantitatively and qualitatively evaluate our models ability to localize discriminative regions spatially and critical frames temporally. Experimental results demonstrate the efficacy of our approach, showing superior or comparable accuracy with the state-of-the-art methods while increasing model interpretability.
We present a general framework for compositional action recognition -- i.e. action recognition where the labels are composed out of simpler components such as subjects, atomic-actions and objects. The main challenge in compositional action recognition is that there is a combinatorially large set of possible actions that can be composed using basic components. However, compositionality also provides a structure that can be exploited. To do so, we develop and test a novel Structured Attention Fusion (SAF) self-attention mechanism to combine information from object detections, which capture the time-series structure of an action, with visual cues that capture contextual information. We show that our approach recognizes novel verb-noun compositions more effectively than current state of the art systems, and it generalizes to unseen action categories quite efficiently from only a few labeled examples. We validate our approach on the challenging Something-Else tasks from the Something-Something-V2 dataset. We further show that our framework is flexible and can generalize to a new domain by showing competitive results on the Charades-Fewshot dataset.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا