Do you want to publish a course? Click here

Optimal CMB Lensing Reconstruction and Parameter Estimation with SPTpol Data

69   0   0.0 ( 0 )
 Added by Marius Millea
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg$^2$ of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 $mu$K-arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly sub-optimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be $A_phi,{=},0.949,{pm},0.122$ using the Bayesian pipeline, consistent with our QE pipeline result, but with 17% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist bias hardening, and reducing the systematic uncertainty on $A_phi$ due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain $A_phi$ along with $A_{rm L}$, the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easily infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on $A_phi$ and 7 times lower effective lensing reconstruction noise.



rate research

Read More

We report the first detection of gravitational lensing due to galaxy clusters using only the polarization of the cosmic microwave background (CMB). The lensing signal is obtained using a new estimator that extracts the lensing dipole signature from stacked images formed by rotating the cluster-centered Stokes $Q/U$ map cutouts along the direction of the locally measured background CMB polarization gradient. Using data from the SPTpol 500 deg$^{2}$ survey at the locations of roughly 18,000 clusters with richness $lambda ge 10$ from the Dark Energy Survey (DES) Year-3 full galaxy cluster catalog, we detect lensing at $4.8sigma$. The mean stacked mass of the selected sample is found to be $(1.43 pm 0.4) times 10^{14} {rm M_{odot}}$ which is in good agreement with optical weak lensing based estimates using DES data and CMB-lensing based estimates using SPTpol temperature data. This measurement is a key first step for cluster cosmology with future low-noise CMB surveys, like CMB-S4, for which CMB polarization will be the primary channel for cluster lensing measurements.
We use cosmic microwave background (CMB) temperature maps from the 500 deg$^{2}$ SPTpol survey to measure the stacked lensing convergence of galaxy clusters from the Dark Energy Survey (DES) Year-3 redMaPPer (RM) cluster catalog. The lensing signal is extracted through a modified quadratic estimator designed to be unbiased by the thermal Sunyaev-Zel{}dovich (tSZ) effect. The modified estimator uses a tSZ-free map, constructed from the SPTpol 95 and 150 GHz datasets, to estimate the background CMB gradient. For lensing reconstruction, we employ t
We explore the reconstruction of the gravitational lensing field of the cosmic microwave background in real space showing that very little statistical information is lost when estimators of short range on the celestial sphere are used in place of the customary estimators in harmonic space, which are nonlocal and in principle require a simultaneous analysis of the entire sky without any cuts or excisions. Because virtually all the information relevant to lensing reconstruction lies on angular scales close to the resolution scale of the sky map, the gravitational lensing dilatation and shear fields (which unlike the deflection field or lensing potential are directly related to the observations in a local manner) may be reconstructed by means of quadratic combinations involving only very closely separated pixels. Even though harmonic space provides a more natural context for understanding lensing reconstruction theoretically, the real space methods developed here have the virtue of being faster to implement and are likely to prove useful for analyzing realistic maps containing a galactic cut and possibly numerous small excisions to exclude point sources that cannot be reliably subtracted.
Gravitational lensing of the CMB is a valuable cosmological signal that correlates to tracers of large-scale structure and acts as a important source of confusion for primordial $B$-mode polarization. State-of-the-art lensing reconstruction analyses use quadratic estimators, which are easily applicable to data. However, these estimators are known to be suboptimal, in particular for polarization, and large improvements are expected to be possible for high signal-to-noise polarization experiments. We develop a method and numerical code, $rm{LensIt}$, that is able to find efficiently the most probable lensing map, introducing no significant approximations to the lensed CMB likelihood, and applicable to beamed and masked data with inhomogeneous noise. It works by iteratively reconstructing the primordial unlensed CMB using a deflection estimate and its inverse, and removing residual lensing from these maps with quadratic estimator techniques. Roughly linear computational cost is maintained due to fast convergence of iterative searches, combined with the local nature of lensing. The method achieves the maximal improvement in signal to noise expected from analytical considerations on the unmasked parts of the sky. Delensing with this optimal map leads to forecast tensor-to-scalar ratio parameter errors improved by a factor $simeq 2 $ compared to the quadratic estimator in a CMB stage IV configuration.
We investigate the potential of using cosmic voids as a probe to constrain cosmological parameters through the gravitational lensing effect of the cosmic microwave background (CMB) and make predictions for the next generation surveys. By assuming the detection of a series of $approx 5 - 10$ voids along a line of sight within a square-degree patch of the sky, we found that they can be used to break the degeneracy direction of some of the cosmological parameter constraints (for example $omega_b$ and $Omega_Lambda$) in comparison with the constraints from random CMB skies with the same size area for a survey with extensive integration time. This analysis is based on our current knowledge of the average void profile and analytical estimates of the void number function. We also provide combined cosmological parameter constraints between a sky patch where series of voids are detected and a patch without voids (a randomly selected patch). The full potential of this technique relies on an accurate determination of the void profile to $approx 10$% level. For a small-area CMB observation with extensive integration time and a high signal-to-noise ratio, CMB lensing with such series of voids will provide a complementary route to cosmological parameter constraints to the CMB observations. Example of parameter constraints with a series of five voids on a $1.0^{circ} times 1.0^{circ}$ patch of the sky are $100omega_b = 2.20 pm 0.27$, $omega_c = 0.120 pm 0.022$, $Omega_Lambda = 0.682 pm 0.078$, $Delta_{mathcal{R}}^2 = left(2.22 pm 7.79right) times 10^{-9}$, $n_s = 0.962 pm 0.097$ and $tau = 0.925 pm 1.747$ at 68% C.L.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا