Do you want to publish a course? Click here

Predictions for the FAST telescopes CRAFTS Extra-Galactic HI Survey

104   0   0.0 ( 0 )
 Added by Kai Zhang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has started the Commensal Radio Astronomy FasT Survey (CRAFTS). In this paper, we use the technical parameters of FAST derived from commissioning observations to simulate the completeness function for extragalactic HI survey of CRAFTS, HI galaxies from two kinds of mock catalogues are selected. One is generated by Monte-Carlo simulation based on the interpolated mass-velocity width function of the ALFALFA $100%$ (a.k.a. $alpha$ .100) catalogue. The other is constructed by semi-analytical N-body simulation based on the $Lambda$CDM model. Our results suggest that a two-pass extragalactic HI survey will be able to detect nearly $4.8times10^{5}$ galaxies, from which the faint end slope of the HI Mass Function (HIMF) can be recovered to $mathrm{10^{7}, M_{odot}}$ and the knee mass of the HIMF can be measured to a redshift of 0.1. Considering the radio frequency interference status and sensitivity limitation, CRAFTS will be efficient in detecting HI galaxies at redshifts below 0.1, which implies a tremendous potential in exploring the galaxy interactions in different environments and the spatial distribution of HI galaxies in the local universe.



rate research

Read More

176 - Kai Zhang , Jingwen Wu , Di Li 2019
The Five-hundred-meter Aperture Spherical radio Telescope(FAST) is expected to complete its commissioning in 2019. FAST will soon begin the Commensal Radio Astronomy FasT Survey(CRAFTS), a novel and unprecedented commensal drift scan survey of the entire sky visible from FAST. The goal of CRAFTS is to cover more than 20000 $deg^{2}$ and reach redshift up to about 0.35. We provide empirical measurements of the beam size and sensitivity of FAST across the 1.05 to 1.45 GHz frequency range of the FAST L-band Array of 19-beams(FLAN). Using a simulated HI-galaxy catalogue based on the HI Mass Function(HIMF), we estimate the number of galaxies that CRAFTS may detect. At redshifts below 0.35, over $6, times , 10^{5}$ HI galaxies may be detected. Below the redshift of 0.07, the CRAFTS HIMF will be complete above a mass threshold of $10^{9.5},M_{odot}$. FAST will be able to investigate the environmental and redshift dependence of the HIMF to an unprecedented depth, shedding light onto the missing baryon and missing satellite problems.
216 - Ningyu Tang , Di Li , Pei Zuo 2019
We present a pilot HI survey of 17 Planck Galactic Cold Clumps (PGCCs) with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). HI Narrow Self-Absorption (HINSA) is an effective method to detect cold HI being mixed with molecular hydrogen H$_2$ and improves our understanding of the atomic to molecular transition in the interstellar medium. HINSA was found in 58% PGCCs that we observed. The column density of HINSA was found to have an intermediate correlation with that of $^{13}$CO, following $rm log( N(HINSA)) = (0.52pm 0.26) log(N_{^{13}CO}) + (10 pm 4.1) $. HI abundance relative to total hydrogen [HI]/[H] has an average value of $4.4times 10^{-3}$, which is about 2.8 times of the average value of previous HINSA surveys toward molecular clouds. For clouds with total column density N$rm_H >5 times 10^{20}$ cm$^{-2}$, an inverse correlation between HINSA abundance and total hydrogen column density is found, confirming the depletion of cold HI gas during molecular gas formation in more massive clouds. Nonthermal line width of $^{13}$CO is about 0-0.5 km s$^{-1}$ larger than that of HINSA. One possible explanation of narrower nonthermal width of HINSA is that HINSA region is smaller than that of $^{13}$CO. Based on an analytic model of H$_2$ formation and H$_2$ dissociation by cosmic ray, we found the cloud ages to be within 10$^{6.7}$-10$^{7.0}$ yr for five sources.
We present a survey of atomic hydrogen HI) emission in the direction of the Galactic Center conducted with the CSIRO Australia Telescope Compact Array (ATCA). The survey covers the area -5 deg < l < +5, -5 deg < b <+5 deg over the velocity range -309 < v_{LSR} < 349 km/s with a velocity resolution of 1 km/s. The ATCA data are supplemented with data from the Parkes Radio Telescope for sensitivity to all angular scales larger than the 145 arcsec angular resolution of the survey. The mean rms brightness temperature across the field is 0.7 K, except near (l,b)=(0 deg, 0 deg) where it increases to ~2 K. This survey complements the Southern Galactic Plane Survey to complete the continuous coverage of the inner Galactic plane in HI at ~2 arcmin resolution. Here we describe the observations and analysis of this Galactic Center survey and present the final data product. Features such as Banias Clump 2, the far 3 kiloparsec arm and small high velocity clumps are briefly described.
We present a new high-sensitivity HI observation toward nearby spiral galaxy M101 and its adjacent 2$^{circ}times$ 2$^{circ}$ region using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). From the observation, we detect a more extended and asymmetric HI disk around M101. While the HI velocity field within the M101s optical disk region is regular, indicating that the relatively strong disturbance occurs in its outer disk. Moreover, we identify three new HI clouds located on the southern edge of the M101s HI disk. The masses of the three HI clouds are 1.3$times$10$^{7}$ $M_{odot}$, 2.4$times$10$^{7}$ $M_{odot}$, and 2.0$times$10$^{7}$ $M_{odot}$, respectively. The HI clouds similar to dwarf companion NGC 5477 rotate with the HI disk of M101. Unlike the NGC 5477, they have no optical counterparts. Furthermore, we detect a new HI tail in the extended HI disk of M101. The HI tail detected gives a reliable evidence for M101 interaction with the dwarf companion NGC 5474. We argue that the extra-planar gas (three HI clouds) and the HI tail detected in the M101s disk may origin from a minor interaction with NGC 5474.
We present 21-cm Spectral Line Observations of Neutral Gas with the VLA (21-SPONGE), a Karl G. Jansky Very Large Array (VLA) large project (~600 hours) for measuring the physical properties of Galactic neutral hydrogen (HI). 21-SPONGE is distinguished among previous Galactic HI studies as a result of: (1) exceptional optical depth sensitivity ($sigma_{tau} < 10^{-3}$ per $0.42rm,km,s^{-1}$ channels over 57 lines of sight); (2) matching 21 cm emission spectra with highest-possible angular resolution (~4) from the Arecibo Observatory; (3) detailed comparisons with numerical simulations for assessing observational biases. We autonomously decompose 21 cm spectra and derive the physical properties (i.e., spin temperature, $T_s$, column density) of the cold neutral medium (CNM; $T_s<250rm,K$), thermally unstable medium (UNM; $250< T_s < 1000rm,K$) and warm neutral medium (WNM; $T_s > 1000rm,K$) simultaneously. We detect 50% of the total HI mass in absorption, the majority of which is CNM (56 +/- 10%, corresponding to 28% of the total HI mass). Although CNM is detected ubiquitously, the CNM fraction along most lines of sight is <50%. We find that 20% of the total HI mass is thermally unstable (41 +/- 10% of HI detected in absorption), with no significant variation with Galactic environment. Finally, although the WNM comprises 52% of the total HI mass, we detect little evidence for WNM absorption with $1000<T_s<4000rm,K$. Following spectral modeling, we detect a stacked residual absorption feature corresponding to WNM with $T_ssim10^4rm,K$. We conclude that excitation in excess of collisions likely produces significantly higher WNM $T_s$ than predicted by steady-state models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا