No Arabic abstract
Causal inference concerns not only the average effect of the treatment on the outcome but also the underlying mechanism through an intermediate variable of interest. Principal stratification characterizes such mechanism by targeting subgroup causal effects within principal strata, which are defined by the joint potential values of an intermediate variable. Due to the fundamental problem of causal inference, principal strata are inherently latent, rendering it challenging to identify and estimate subgroup effects within them. A line of research leverages the principal ignorability assumption that the latent principal strata are mean independent of the potential outcomes conditioning on the observed covariates. Under principal ignorability, we derive various nonparametric identification formulas for causal effects within principal strata in observational studies, which motivate estimators relying on the correct specifications of different parts of the observed-data distribution. Appropriately combining these estimators further yields new triply robust estimators for the causal effects within principal strata. These new estimators are consistent if two of the treatment, intermediate variable, and outcome models are correctly specified, and they are locally efficient if all three models are correctly specified. We show that these estimators arise naturally from either the efficient influence functions in the semiparametric theory or the model-assisted estimators in the survey sampling theory. We evaluate different estimators based on their finite-sample performance through simulation, apply them to two observational studies, and implement them in an open-source software package.
In causal inference, principal stratification is a framework for dealing with a posttreatment intermediate variable between a treatment and an outcome, in which the principal strata are defined by the joint potential values of the intermediate variable. Because the principal strata are not fully observable, the causal effects within them, also known as the principal causal effects, are not identifiable without additional assumptions. Several previous empirical studies leveraged auxiliary variables to improve the inference of principal causal effects. We establish a general theory for identification and estimation of the principal causal effects with auxiliary variables, which provides a solid foundation for statistical inference and more insights for model building in empirical research. In particular, we consider two commonly-used strategies for principal stratification problems: principal ignorability, and the conditional independence between the auxiliary variable and the outcome given principal strata and covariates. For these two strategies, we give non-parametric and semi-parametric identification results without modeling assumptions on the outcome. When the assumptions for neither strategies are plausible, we propose a large class of flexible parametric and semi-parametric models for identifying principal causal effects. Our theory not only establishes formal identification results of several models that have been used in previous empirical studies but also generalizes them to allow for different types of outcomes and intermediate variables.
Although social and biomedical scientists have long been interested in the process through which ideas and behaviors diffuse, the identification of causal diffusion effects, also known as peer and contagion effects, remains challenging. Many scholars consider the commonly used assumption of no omitted confounders to be untenable due to contextual confounding and homophily bias. To address this long-standing problem, we examine the causal identification under a new assumption of structural stationarity, which formalizes the underlying diffusion process with a class of dynamic causal directed acyclic graphs. First, we develop a statistical test that can detect a wide range of biases, including the two types mentioned above. We then propose a difference-in-differences style estimator that can directly correct biases under an additional parametric assumption. Leveraging the proposed methods, we study the spatial diffusion of hate crimes against refugees in Germany. After correcting large upward bias in existing studies, we find hate crimes diffuse only to areas that have a high proportion of school dropouts.
Causal effect sizes may vary among individuals and they can even be of opposite directions. When there exists serious effect heterogeneity, the population average causal effect (ACE) is not very informative. It is well-known that individual causal effects (ICEs) cannot be determined in cross-sectional studies, but we will show that ICEs can be retrieved from longitudinal data under certain conditions. We will present a general framework for individual causality where we will view effect heterogeneity as an individual-specific effect modification that can be parameterized with a latent variable, the receptiveness factor. The distribution of the receptiveness factor can be retrieved, and it will enable us to study the contrast of the potential outcomes of an individual under stationarity assumptions. Within the framework, we will study the joint distribution of the individuals potential outcomes conditioned on all individuals factual data and subsequently the distribution of the cross-world causal effect (CWCE). We discuss conditions such that the latter converges to a degenerated distribution, in which case the ICE can be estimated consistently. To demonstrate the use of this general framework, we present examples in which the outcome process can be parameterized as a (generalized) linear mixed model.
The empirical literature on program evaluation limits its scope almost exclusively to models where treatment effects are homogenous for observationally identical individuals. This paper considers a treatment effect model in which treatment effects may be heterogeneous, even among observationally identical individuals. Specifically, extending the classical instrumental variables (IV) model with an endogenous binary treatment and a binary instrument, we allow the heteroskedasticity of the error disturbance to also depend upon the treatment variable so that treatment has both mean and variance effects on the outcome. In this endogenous heteroskedasticity IV (EHIV) model with heterogeneous individual treatment effects, the standard IV estimator can be inconsistent and lead to incorrect inference. After showing identification of the mean and variance treatment effects in a nonparametric version of the EHIV model, we provide closed-form estimators for the linear EHIV for the mean and variance treatment effects and the individual treatment effects (ITE). Asymptotic properties of the estimators are provided. A Monte Carlo simulation investigates the performance of the proposed approach, and an empirical application regarding the effects of fertility on female labor supply is considered.
When estimating the treatment effect in an observational study, we use a semiparametric locally efficient dimension reduction approach to assess both the treatment assignment mechanism and the average responses in both treated and nontreated groups. We then integrate all results through imputation, inverse probability weighting and doubly robust augmentation estimators. Doubly robust estimators are locally efficient while imputation estimators are super-efficient when the response models are correct. To take advantage of both procedures, we introduce a shrinkage estimator to automatically combine the two, which retains the double robustness property while improving on the variance when the response model is correct. We demonstrate the performance of these estimators through simulated experiments and a real dataset concerning the effect of maternal smoking on baby birth weight. Key words and phrases: Average Treatment Effect, Doubly Robust Estimator, Efficiency, Inverse Probability Weighting, Shrinkage Estimator.