No Arabic abstract
The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate locally-decodable codes. However, the algorithmic results about these codes crucially rely on the fact that the polynomials are evaluated on a vector space and not an arbitrary product set. In this work, we show how to decode multivariate multiplicity codes of large multiplicities in polynomial time over finite product sets (over fields of large characteristic and zero characteristic). Previously such decoding algorithms were not known even for a positive fraction of errors. In contrast, our work goes all the way to the distance of the code and in particular exceeds both the unique decoding bound and the Johnson bound. For errors exceeding the Johnson bound, even combinatorial list-decodablity of these codes was not known. Our algorithm is an application of the classical polynomial method directly to the multivariate setting. In particular, we do not rely on a reduction from the multivariate to the univariate case as is typical of many of the existing results on decoding codes based on multivariate polynomials. However, a vanilla application of the polynomial method in the multivariate setting does not yield a polynomial upper bound on the list size. We obtain a polynomial bound on the list size by taking an alternative view of multivariate multiplicity codes. In this view, we glue all the partial derivatives of the same order together using a fresh set $z$ of variables. We then apply the polynomial method by viewing this as a problem over the field $mathbb{F}(z)$ of rational functions in $z$.
We give a polynomial time algorithm to decode multivariate polynomial codes of degree $d$ up to half their minimum distance, when the evaluation points are an arbitrary product set $S^m$, for every $d < |S|$. Previously known algorithms can achieve this only if the set $S$ has some very special algebraic structure, or if the degree $d$ is significantly smaller than $|S|$. We also give a near-linear time randomized algorithm, which is based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided $d < (1-epsilon)|S|$ for constant $epsilon > 0$. Our result gives an $m$-dimensional generalization of the well known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The proposed algorithm closes half of the gap between conventional iterative bounded distance decoding (iBDD) and turbo product decoding based on the Chase--Pyndiah algorithm, at the expense of some increase in complexity. Furthermore, the proposed algorithm entails only a limited increase in data flow compared to iBDD.
We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabilities and is therefore soft in nature. However, the messages exchanged by the component decoders are binary (hard) messages, which significantly reduces the decoder data flow. The exchanged binary messages are obtained by combining the channel reliability with the BDD decoder output reliabilities, properly conveyed by a scaling factor applied to the BDD decisions. We perform a density evolution analysis for generalized low-density parity-check (GLDPC) code ensembles and spatially coupled GLDPC code ensembles, from which the scaling factors of the iBDD-SR for product and staircase codes, respectively, can be obtained. For the white additive Gaussian noise channel, we show performance gains up to $0.29$ dB and $0.31$ dB for product and staircase codes compared to conventional iterative BDD (iBDD) with the same decoder data flow. Furthermore, we show that iBDD-SR approaches the performance of ideal iBDD that prevents miscorrections.
We introduce successive cancellation (SC) decoding of product codes (PCs) with single parity-check (SPC) component codes. Recursive formulas are derived, which resemble the SC decoding algorithm of polar codes. We analyze the error probability of SPC-PCs over the binary erasure channel under SC decoding. A bridge with the analysis of PCs introduced by Elias in 1954 is also established. Furthermore, bounds on the block error probability under SC decoding are provided, and compared to the bounds under the original decoding algorithm proposed by Elias. It is shown that SC decoding of SPC-PCs achieves a lower block error probability than Elias decoding.
Product codes (PCs) and staircase codes (SCCs) are conventionally decoded based on bounded distance decoding (BDD) of the component codes and iterating between row and column decoders. The performance of iterative BDD (iBDD) can be improved using soft-aided (hybrid) algorithms. Among these, iBDD with combined reliability (iBDD-CR) has been recently proposed for PCs, yielding sizeable performance gains at the expense of a minor increase in complexity compared to iBDD. In this paper, we first extend iBDD-CR to SCCs. We then propose two novel decoding algorithms for PCs and SCCs which improve upon iBDD-CR. The new algorithms use an extra decoding attempt based on error and erasure decoding of the component codes. The proposed algorithms require only the exchange of hard messages between component decoders, making them an attractive solution for ultra high-throughput fiber-optic systems. Simulation results show that our algorithms based on two decoding attempts achieve gains of up to $0.88$ dB for both PCs and SCCs. This corresponds to a $33%$ optical reach enhancement over iBDD with bit-interleaved coded modulation using $256$ quadrature amplitude modulation.