Do you want to publish a course? Click here

Neutrino Masses from Low Scale Partial Compositeness

62   0   0.0 ( 0 )
 Added by Zhen Liu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider a class of models in which the neutrinos acquire Majorana masses through mixing with singlet neutrinos that emerge as composite states of a strongly coupled hidden sector. In this framework, the light neutrinos are partially composite particles that obtain their masses through the inverse seesaw mechanism. We focus on the scenario in which the strong dynamics is approximately conformal in the ultraviolet, and the compositeness scale lies at or below the weak scale. The small parameters in the Lagrangian necessary to realize the observed neutrino masses can naturally arise as a consequence of the scaling dimensions of operators in the conformal field theory. We show that this class of models has interesting implications for a wide variety of experiments, including colliders and beam dumps, searches for lepton flavor violation and neutrinoless double beta decay, and cosmological observations. At colliders and beam dumps, this scenario can give rise to striking signals involving multiple displaced vertices. The exchange of hidden sector states can lead to observable rates for flavor violating processes such as $mu rightarrow e gamma$ and $mu rightarrow e$ conversion. If the compositeness scale lies at or below a hundred MeV, the rate for neutrinoless double beta decay is suppressed by form factors and may be reduced by an order of magnitude or more. The late decays of relic singlet neutrinos can give rise to spectral distortions in the cosmic microwave background that are large enough to be observed in future experiments.



rate research

Read More

Providing an Ultra-Violet completion valid up to the Planck scale is of paramount importance to validate the composite Higgs paradigm, at par with supersymmetry. We propose the first complete and feasible framework, based on partial unification of a confining hypercolor gauge group, where couplings of the standard model fermions are mediated by both gauge and scalar bosons. We demonstrate our approach by providing an explicit model based on a Techni-Pati-Salam unification, $SU(8)_{rm PS}times SU(2)_Ltimes SU(2)_R$, able to generate masses for all fermion generations, including neutrinos, via partial compositeness. We predict an $Sp(4)$ hypercolor group, and lattice studies will be crucial to validate the model.
91 - A. Abada , C.Biggio , F. Bonnet 2008
While all models of Majorana neutrino masses lead to the same dimension five effective operator, which does not conserve lepton number, the dimension six operators induced at low energies conserve lepton number and differ depending on the high energy model of new physics. We derive the low-energy dimension six operators which are characteristic of generic Seesaw models, in which neutrino masses result from the exchange of heavy fields which may be either fermionic singlets, fermionic triplets or scalar triplets. The resulting operators may lead to effects observable in the near future, if the coefficients of the dimension five and six operators are decoupled along a certain pattern, which turns out to be common to all models. The phenomenological consequences are explored as well, including their contributions to $mu to e gamma$ and new bounds on the Yukawa couplings for each model.
We present a new approach for generating tiny neutrino masses. The Dirac neutrino mass matrix gets contributions from two new Higgs doublets with their vevs at the electroweak (EW) scale. Neutrino masses are tiny not because of tiny Yukawa couplings, or very heavy ($sim 10^{14}textrm{GeV}$) right handed neutrinos. They are tiny because of a cancelation in the Dirac neutrino mass matrix (fine tuning). After fine tuning to make the Dirac neutrino mass matrix at the $10^{-4}$ GeV scale, light neutrino masses are obtained in the correct scale via the see-saw mechanism with the right handed neutrino at the EW scale. The proposal links neutrino physics to collider physics. The Higgs search strategy is completely altered. For a wide range of Higgs masses, the Standard Model Higgs decays dominantly to $ u_L N_R$ mode giving rise to the final state $bar{ u} u bar{b} b$, or $bar{ u} u tau^+tau^-$. This can be tested at the LHC, and possibly at the Tevatron.
There is a renewed interest in constraining the sum of the masses of the three neutrino flavours by using cosmological measurements. Solar, atmospheric, and reactor neutrino experiments have confirmed neutrino oscillations, implying that neutrinos have non-zero mass, but without pinning down their absolute masses. While it is established that the effect of light neutrinos on the evolution of cosmic structure is small, the upper limits derived from large-scale structure could help significantly to constrain the absolute scale of the neutrino masses. It is also important to know the sum of neutrino masses as it is degenerate with the values of other cosmological parameters, e.g. the amplitude of fluctuations and the primordial spectral index. A summary of cosmological neutrino mass limits is given. Current results from cosmology set an upper limit on the sum of the neutrino masses of ~1 eV, somewhat depending on the data sets used in the analyses and assumed priors on cosmological parameters. It is important to emphasize that the total neutrino mass (`hot dark matter) is derived assuming that the other components in the universe are baryons, cold dark matter and dark energy. We assess the impact of neutrino masses on the matter power spectrum, the cosmic microwave background, peculiar velocities and gravitational lensing. We also discuss future methods to improve the mass upper limits by an order of magnitude.
Partial compositeness is a key ingredient of models where the electroweak symmetry is broken by a composite Higgs state. Recently, a UV completion of partial compositeness was proposed, featuring a new strongly coupled gauge interaction as well as new fundamental fermions and scalars. We work out the full flavor structure of the minimal realization of this idea and investigate in detail the consequences for flavor physics. While CP violation in kaon mixing represents a significant constraint on the model, we find many viable parameter points passing all precision tests. We also demonstrate that the recently observed hints for a violation of lepton flavor universality in $Bto K^{(*)}ellell$ decays can be accommodated by the model, while the anomalies in $Bto D^{(*)}tau u$ cannot be explained while satisfying LEP constraints on $Z$ couplings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا