Do you want to publish a course? Click here

Improved Contrastive Divergence Training of Energy Based Models

105   0   0.0 ( 0 )
 Added by Yilun Du
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Contrastive divergence is a popular method of training energy-based models, but is known to have difficulties with training stability. We propose an adaptation to improve contrastive divergence training by scrutinizing a gradient term that is difficult to calculate and is often left out for convenience. We show that this gradient term is numerically significant and in practice is important to avoid training instabilities, while being tractable to estimate. We further highlight how data augmentation and multi-scale processing can be used to improve model robustness and generation quality. Finally, we empirically evaluate stability of model architectures and show improved performance on a host of benchmarks and use cases,such as image generation, OOD detection, and compositional generation.



rate research

Read More

This paper studies a training method to jointly estimate an energy-based model and a flow-based model, in which the two models are iteratively updated based on a shared adversarial value function. This joint training method has the following traits. (1) The update of the energy-based model is based on noise contrastive estimation, with the flow model serving as a strong noise distribution. (2) The update of the flow model approximately minimizes the Jensen-Shannon divergence between the flow model and the data distribution. (3) Unlike generative adversarial networks (GAN) which estimates an implicit probability distribution defined by a generator model, our method estimates two explicit probabilistic distributions on the data. Using the proposed method we demonstrate a significant improvement on the synthesis quality of the flow model, and show the effectiveness of unsupervised feature learning by the learned energy-based model. Furthermore, the proposed training method can be easily adapted to semi-supervised learning. We achieve competitive results to the state-of-the-art semi-supervised learning methods.
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data. The learning objective of GANs usually minimizes some measure discrepancy, textit{e.g.}, $f$-divergence~($f$-GANs) or Integral Probability Metric~(Wasserstein GANs). With $f$-divergence as the objective function, the discriminator essentially estimates the density ratio, and the estimated ratio proves useful in further improving the sample quality of the generator. However, how to leverage the information contained in the discriminator of Wasserstein GANs (WGAN) is less explored. In this paper, we introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGANs discriminator and the relationship between WGAN and energy-based model. Compared to standard GANs, where the generator is directly utilized to obtain new samples, our method proposes a semi-amortized generation procedure where the samples are produced with the generators output as an initial state. Then several steps of Langevin dynamics are conducted using the gradient of the discriminator. We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
Weight-sharing neural architecture search (NAS) is an effective technique for automating efficient neural architecture design. Weight-sharing NAS builds a supernet that assembles all the architectures as its sub-networks and jointly trains the supernet with the sub-networks. The success of weight-sharing NAS heavily relies on distilling the knowledge of the supernet to the sub-networks. However, we find that the widely used distillation divergence, i.e., KL divergence, may lead to student sub-networks that over-estimate or under-estimate the uncertainty of the teacher supernet, leading to inferior performance of the sub-networks. In this work, we propose to improve the supernet training with a more generalized alpha-divergence. By adaptively selecting the alpha-divergence, we simultaneously prevent the over-estimation or under-estimation of the uncertainty of the teacher model. We apply the proposed alpha-divergence based supernets training to both slimmable neural networks and weight-sharing NAS, and demonstrate significant improvements. Specifically, our discovered model family, AlphaNet, outperforms prior-art models on a wide range of FLOPs regimes, including BigNAS, Once-for-All networks, and AttentiveNAS. We achieve ImageNet top-1 accuracy of 80.0% with only 444M FLOPs. Our code and pretrained models are available at https://github.com/facebookresearch/AlphaNet.
A class of recent semi-supervised learning (SSL) methods heavily rely on domain-specific data augmentations. In contrast, generative SSL methods involve unsupervised learning based on generative models by either joint-training or pre-training, and are more appealing from the perspective of being domain-agnostic, since they do not inherently require data augmentations. Joint-training estimates the joint distribution of observations and labels, while pre-training is taken over observations only. Recently, energy-based models (EBMs) have achieved promising results for generative modeling. Joint-training via EBMs for SSL has been explored with encouraging results across different data modalities. In this paper, we make two contributions. First, we explore pre-training via EBMs for SSL and compare it to joint-training. Second, a suite of experiments are conducted over domains of image classification and natural language labeling to give a realistic whole picture of the performances of EBM based SSL methods. It is found that joint-training EBMs outperform pre-training EBMs marginally but nearly consistently.
Meta-learning for offline reinforcement learning (OMRL) is an understudied problem with tremendous potential impact by enabling RL algorithms in many real-world applications. A popular solution to the problem is to infer task identity as augmented state using a context-based encoder, for which efficient learning of task representations remains an open challenge. In this work, we improve upon one of the SOTA OMRL algorithms, FOCAL, by incorporating intra-task attention mechanism and inter-task contrastive learning objectives for more effective task inference and learning of control. Theoretical analysis and experiments are presented to demonstrate the superior performance, efficiency and robustness of our end-to-end and model free method compared to prior algorithms across multiple meta-RL benchmarks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا