No Arabic abstract
We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms. Our first main results are average-case algorithms for these problems. For example, we develop an algorithm that takes two cubic forms $f, gin mathbb{F}_q[x_1,dots, x_n]$, and decides whether $f$ and $g$ are isomorphic in time $q^{O(n)}$ for most $f$. This average-case setting has direct practical implications, having been studied in multivariate cryptography since the 1990s. Our second result concerns the complexity of testing equivalence of alternating trilinear forms. This problem is of interest in both mathematics and cryptography. We show that this problem is polynomial-time equivalent to testing equivalence of symmetric trilinear forms, by showing that they are both Tensor Isomorphism-complete (Grochow-Qiao, ITCS, 2021), therefore is equivalent to testing isomorphism of cubic forms over most fields.
We present a deterministic algorithm which computes the multilinear factors of multivariate lacunary polynomials over number fields. Its complexity is polynomial in $ell^n$ where $ell$ is the lacunary size of the input polynomial and $n$ its number of variables, that is in particular polynomial in the logarithm of its degree. We also provide a randomized algorithm for the same problem of complexity polynomial in $ell$ and $n$. Over other fields of characteristic zero and finite fields of large characteristic, our algorithms compute the multilinear factors having at least three monomials of multivariate polynomials. Lower bounds are provided to explain the limitations of our algorithm. As a by-product, we also design polynomial-time deterministic polynomial identity tests for families of polynomials which were not known to admit any. Our results are based on so-called Gap Theorem which reduce high-degree factorization to repeated low-degree factorizations. While previous algorithms used Gap Theorems expressed in terms of the heights of the coefficients, our Gap Theorems only depend on the exponents of the polynomials. This makes our algorithms more elementary and general, and faster in most cases.
We define and study the complexity of robust polynomials for Boolean functions and the related fault-tolerant quantum decision trees, where input bits are perturbed by noise. We compare several different possible definitions. Our main results are * For every n-bit Boolean function f there is an n-variate polynomial p of degree O(n) that robustly approximates it, in the sense that p(x) remains close to f(x) if we slightly vary each of the n inputs of the polynomial. * There is an O(n)-query quantum algorithm that robustly recovers n noisy input bits. Hence every n-bit function can be quantum computed with O(n) queries in the presence of noise. This contrasts with the classical model of Feige et al., where functions such as parity need Theta(n*log n) queries. We give several extensions and applications of these results.
A graph is said to be circular-arc if the vertices can be associated with arcs of a circle so that two vertices are adjacent if and only if the corresponding arcs overlap. It is proved that the isomorphism of circular-arc graphs can be tested by the Weisfeiler-Leman algorithm after individualization of two vertices.
Consider a planar graph $G=(V,E)$ with polynomially bounded edge weight function $w:Eto [0, poly(n)]$. The main results of this paper are NC algorithms for the following problems: - minimum weight perfect matching in $G$, - maximum cardinality and maximum weight matching in $G$ when $G$ is bipartite, - maximum multiple-source multiple-sink flow in $G$ where $c:Eto [1, poly(n)]$ is a polynomially bounded edge capacity function, - minimum weight $f$-factor in $G$ where $f:Vto [1, poly(n)]$, - min-cost flow in $G$ where $c:Eto [1, poly(n)]$ is a polynomially bounded edge capacity function and $b:Vto [1, poly(n)]$ is a polynomially bounded vertex demand function. There have been no known NC algorithms for any of these problems previously (Before this and independent paper by Anari and Vazirani). In order to solve these problems we develop a new relatively simple but versatile framework that is combinatorial in spirit. It handles the combinatorial structure of matchings directly and needs to only know weights of appropriately defined matchings from algebraic subroutines.
We establish a polynomial-time approximation algorithm for partition functions of quantum spin models at high temperature. Our algorithm is based on the quantum cluster expansion of Netov{c}ny and Redig and the cluster expansion approach to designing algorithms due to Helmuth, Perkins, and Regts. Similar results have previously been obtained by related methods, and our main contribution is a simple and slightly sharper analysis for the case of pairwise interactions on bounded-degree graphs.