Do you want to publish a course? Click here

Learning Vector Quantized Shape Code for Amodal Blastomere Instance Segmentation

95   0   0.0 ( 0 )
 Added by Won-Dong Jang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Blastomere instance segmentation is important for analyzing embryos abnormality. To measure the accurate shapes and sizes of blastomeres, their amodal segmentation is necessary. Amodal instance segmentation aims to recover the complete silhouette of an object even when the object is not fully visible. For each detected object, previous methods directly regress the target mask from input features. However, images of an object under different amounts of occlusion should have the same amodal mask output, which makes it harder to train the regression model. To alleviate the problem, we propose to classify input features into intermediate shape codes and recover complete object shapes from them. First, we pre-train the Vector Quantized Variational Autoencoder (VQ-VAE) model to learn these discrete shape codes from ground truth amodal masks. Then, we incorporate the VQ-VAE model into the amodal instance segmentation pipeline with an additional refinement module. We also detect an occlusion map to integrate occlusion information with a backbone feature. As such, our network faithfully detects bounding boxes of amodal objects. On an internal embryo cell image benchmark, the proposed method outperforms previous state-of-the-art methods. To show generalizability, we show segmentation results on the public KINS natural image benchmark. To examine the learned shape codes and model design choices, we perform ablation studies on a synthetic dataset of simple overlaid shapes. Our method would enable accurate measurement of blastomeres in in vitro fertilization (IVF) clinics, which potentially can increase IVF success rate.



rate research

Read More

In this work, we demonstrate yet another approach to tackle the amodal segmentation problem. Specifically, we first introduce a new representation, namely a semantics-aware distance map (sem-dist map), to serve as our target for amodal segmentation instead of the commonly used masks and heatmaps. The sem-dist map is a kind of level-set representation, of which the different regions of an object are placed into different levels on the map according to their visibility. It is a natural extension of masks and heatmaps, where modal, amodal segmentation, as well as depth order information, are all well-described. Then we also introduce a novel convolutional neural network (CNN) architecture, which we refer to as semantic layering network, to estimate sem-dist maps layer by layer, from the global-level to the instance-level, for all objects in an image. Extensive experiments on the COCOA and D2SA datasets have demonstrated that our framework can predict amodal segmentation, occlusion and depth order with state-of-the-art performance.
We present a novel explicit shape representation for instance segmentation. Based on how to model the object shape, current instance segmentation systems can be divided into two categories, implicit and explicit models. The implicit methods, which represent the object mask/contour by intractable network parameters, and produce it through pixel-wise classification, are predominant. However, the explicit methods, which parameterize the shape with simple and explainable models, are less explored. Since the operations to generate the final shape are light-weighted, the explicit methods have a clear speed advantage over implicit methods, which is crucial for real-world applications. The proposed USD-Seg adopts a linear model, sparse coding with dictionary, for object shapes. First, it learns a dictionary from a large collection of shape datasets, making any shape being able to be decomposed into a linear combination through the dictionary. Hence the name Universal Shape Dictionary. Then it adds a simple shape vector regression head to ordinary object detector, giving the detector segmentation ability with minimal overhead. For quantitative evaluation, we use both average precision (AP) and the proposed Efficiency of AP (AP$_E$) metric, which intends to also measure the computational consumption of the framework to cater to the requirements of real-world applications. We report experimental results on the challenging COCO dataset, in which our single model on a single Titan Xp GPU achieves 35.8 AP and 27.8 AP$_E$ at 65 fps with YOLOv4 as base detector, 34.1 AP and 28.6 AP$_E$ at 12 fps with FCOS as base detector.
In this paper, we propose a novel top-down instance segmentation framework based on explicit shape encoding, named textbf{ESE-Seg}. It largely reduces the computational consumption of the instance segmentation by explicitly decoding the multiple object shapes with tensor operations, thus performs the instance segmentation at almost the same speed as the object detection. ESE-Seg is based on a novel shape signature Inner-center Radius (IR), Chebyshev polynomial fitting and the strong modern object detectors. ESE-Seg with YOLOv3 outperforms the Mask R-CNN on Pascal VOC 2012 at mAP$^[email protected] while 7 times faster.
Panoptic segmentation requires segments of both things (countable object instances) and stuff (uncountable and amorphous regions) within a single output. A common approach involves the fusion of instance segmentation (for things) and semantic segmentation (for stuff) into a non-overlapping placement of segments, and resolves overlaps. However, instance ordering with detection confidence do not correlate well with natural occlusion relationship. To resolve this issue, we propose a branch that is tasked with modeling how two instance masks should overlap one another as a binary relation. Our method, named OCFusion, is lightweight but particularly effective in the instance fusion process. OCFusion is trained with the ground truth relation derived automatically from the existing dataset annotations. We obtain state-of-the-art results on COCO and show competitive results on the Cityscapes panoptic segmentation benchmark.
Direct contour regression for instance segmentation is a challenging task. Previous works usually achieve it by learning to progressively refine the contour prediction or adopting a shape representation with limited expressiveness. In this work, we argue that the difficulty in regressing the contour points in one pass is mainly due to the ambiguity when discretizing a smooth contour into a polygon. To address the ambiguity, we propose a novel differentiable rendering-based approach named textbf{ContourRender}. During training, it first predicts a contour generated by an invertible shape signature, and then optimizes the contour with the more stable silhouette by converting it to a contour mesh and rendering the mesh to a 2D map. This method significantly improves the quality of contour without iterations or cascaded refinements. Moreover, as optimization is not needed during inference, the inference speed will not be influenced. Experiments show the proposed ContourRender outperforms all the contour-based instance segmentation approaches on COCO, while stays competitive with the iteration-based state-of-the-art on Cityscapes. In addition, we specifically select a subset from COCO val2017 named COCO ContourHard-val to further demonstrate the contour quality improvements. Codes, models, and dataset split will be released.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا