Although instance segmentation has made considerable advancement over recent years, its still a challenge to design high accuracy algorithms with real-time performance. In this paper, we propose a real-time instance segmentation framework termed OrienMask. Upon the one-stage object detector YOLOv3, a mask head is added to predict some discriminative orientation maps, which are explicitly defined as spatial offset vectors for both foreground and background pixels. Thanks to the discrimination ability of orientation maps, masks can be recovered without the need for extra foreground segmentation. All instances that match with the same anchor size share a common orientation map. This special sharing strategy reduces the amortized memory utilization for mask predictions but without loss of mask granularity. Given the surviving box predictions after NMS, instance masks can be concurrently constructed from the corresponding orientation maps with low complexity. Owing to the concise design for mask representation and its effective integration with the anchor-based object detector, our method is qualified under real-time conditions while maintaining competitive accuracy. Experiments on COCO benchmark show that OrienMask achieves 34.8 mask AP at the speed of 42.7 fps evaluated with a single RTX 2080 Ti. The code is available at https://github.com/duwt/OrienMask.
We present a novel method, called CenterPoly, for real-time instance segmentation using bounding polygons. We apply it to detect road users in dense urban environments, making it suitable for applications in intelligent transportation systems like automated vehicles. CenterPoly detects objects by their center keypoint while predicting a fixed number of polygon vertices for each object, thus performing detection and segmentation in parallel. Most of the network parameters are shared by the network heads, making it fast and lightweight enough to run at real-time speed. To properly convert mask ground-truth to polygon ground-truth, we designed a vertex selection strategy to facilitate the learning of the polygons. Additionally, to better segment overlapping objects in dense urban scenes, we also train a relative depth branch to determine which instances are closer and which are further, using available weak annotations. We propose several models with different backbones to show the possible speed / accuracy trade-offs. The models were trained and evaluated on Cityscapes, KITTI and IDD and the results are reported on their public benchmark, which are state-of-the-art at real-time speeds. Code is available at https://github.com/hu64/CenterPoly
Instance segmentation is an important problem in computer vision, with applications in autonomous driving, drone navigation and robotic manipulation. However, most existing methods are not real-time, complicating their deployment in time-sensitive contexts. In this work, we extend an existing approach to real-time instance segmentation, called `Straight to Shapes (STS), which makes use of low-dimensional shape embedding spaces to directly regress to object shape masks. The STS model can run at 35 FPS on a high-end desktop, but its accuracy is significantly worse than that of offline state-of-the-art methods. We leverage recent advances in the design and training of deep instance segmentation models to improve the performance accuracy of the STS model whilst keeping its real-time capabilities intact. In particular, we find that parameter sharing, more aggressive data augmentation and the use of structured loss for shape mask prediction all provide a useful boost to the network performance. Our proposed approach, `Straight to Shapes++, achieves a remarkable 19.7 point improvement in mAP (at IOU of 0.5) over the original method as evaluated on the PASCAL VOC dataset, thus redefining the accuracy frontier at real-time speeds. Since the accuracy of instance segmentation is closely tied to that of object bounding box prediction, we also study the error profile of the latter and examine the failure modes of our method for future improvements.
We present a novel explicit shape representation for instance segmentation. Based on how to model the object shape, current instance segmentation systems can be divided into two categories, implicit and explicit models. The implicit methods, which represent the object mask/contour by intractable network parameters, and produce it through pixel-wise classification, are predominant. However, the explicit methods, which parameterize the shape with simple and explainable models, are less explored. Since the operations to generate the final shape are light-weighted, the explicit methods have a clear speed advantage over implicit methods, which is crucial for real-world applications. The proposed USD-Seg adopts a linear model, sparse coding with dictionary, for object shapes. First, it learns a dictionary from a large collection of shape datasets, making any shape being able to be decomposed into a linear combination through the dictionary. Hence the name Universal Shape Dictionary. Then it adds a simple shape vector regression head to ordinary object detector, giving the detector segmentation ability with minimal overhead. For quantitative evaluation, we use both average precision (AP) and the proposed Efficiency of AP (AP$_E$) metric, which intends to also measure the computational consumption of the framework to cater to the requirements of real-world applications. We report experimental results on the challenging COCO dataset, in which our single model on a single Titan Xp GPU achieves 35.8 AP and 27.8 AP$_E$ at 65 fps with YOLOv4 as base detector, 34.1 AP and 28.6 AP$_E$ at 12 fps with FCOS as base detector.
Blastomere instance segmentation is important for analyzing embryos abnormality. To measure the accurate shapes and sizes of blastomeres, their amodal segmentation is necessary. Amodal instance segmentation aims to recover the complete silhouette of an object even when the object is not fully visible. For each detected object, previous methods directly regress the target mask from input features. However, images of an object under different amounts of occlusion should have the same amodal mask output, which makes it harder to train the regression model. To alleviate the problem, we propose to classify input features into intermediate shape codes and recover complete object shapes from them. First, we pre-train the Vector Quantized Variational Autoencoder (VQ-VAE) model to learn these discrete shape codes from ground truth amodal masks. Then, we incorporate the VQ-VAE model into the amodal instance segmentation pipeline with an additional refinement module. We also detect an occlusion map to integrate occlusion information with a backbone feature. As such, our network faithfully detects bounding boxes of amodal objects. On an internal embryo cell image benchmark, the proposed method outperforms previous state-of-the-art methods. To show generalizability, we show segmentation results on the public KINS natural image benchmark. To examine the learned shape codes and model design choices, we perform ablation studies on a synthetic dataset of simple overlaid shapes. Our method would enable accurate measurement of blastomeres in in vitro fertilization (IVF) clinics, which potentially can increase IVF success rate.