Do you want to publish a course? Click here

Asymptotic analysis of a problem for dynamic thermoelastic shells

97   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we consider a family of three-dimensional problems in thermoelasticity for linear elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero.We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation.



rate research

Read More

The Persistent Turning Walker Model (PTWM) was introduced by Gautrais et al in Mathematical Biology for the modelling of fish motion. It involves a nonlinear pathwise functional of a non-elliptic hypo-elliptic diffusion. This diffusion solves a kinetic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian process. The long time diffusive behavior of this model was recently studied by Degond & Motsch using partial differential equations techniques. This model is however intrinsically probabilistic. In the present paper, we show how the long time diffusive behavior of this model can be essentially recovered and extended by using appropriate tools from stochastic analysis. The approach can be adapted to many other kinetic probabilistic models.
179 - Goro Akagi 2015
The stability of asymptotic profiles of solutions to the Cauchy-Dirichlet problem for Fast Diffusion Equation (FDE, for short) is discussed. The main result of the present paper is the stability of any asymptotic profiles of least energy. It is noteworthy that this result can cover non-isolated profiles, e.g., those for thin annular domain cases. The method of proof is based on the Lojasiewicz-Simon inequality, which is usually used to prove the convergence of solutions to prescribed limits, as well as a uniform extinction estimate for solutions to FDE. Besides, local minimizers of an energy functional associated with this issue are characterized. Furthermore, the instability of positive radial asymptotic profiles in thin annular domains is also proved by applying the Lojasiewicz-Simon inequality in a different way.
For a general subcritical second-order elliptic operator $P$ in a domain $Omega subset mathbb{R}^n$ (or noncompact manifold), we construct Hardy-weight $W$ which is optimal in the following sense. The operator $P - lambda W$ is subcritical in $Omega$ for all $lambda < 1$, null-critical in $Omega$ for $lambda = 1$, and supercritical near any neighborhood of infinity in $Omega$ for any $lambda > 1$. Moreover, if $P$ is symmetric and $W>0$, then the spectrum and the essential spectrum of $W^{-1}P$ are equal to $[1,infty)$, and the corresponding Agmon metric is complete. Our method is based on the theory of positive solutions and applies to both symmetric and nonsymmetric operators. The constructed Hardy-weight is given by an explicit simple formula involving two distinct positive solutions of the equation $Pu=0$, the existence of which depends on the subcriticality of $P$ in $Omega$.
We introduce a new model of the logarithmic type of wave like plate equation with a nonlocal logarithmic damping mechanism. We consider the Cauchy problem for this new model in the whole space, and study the asymptotic profile and optimal decay rates of solutions as time goes to infinity in L^{2}-sense. The operator L considered in this paper was first introduced to dissipate the solutions of the wave equation in the paper studied by Charao-Ikehata in 2020. We will discuss the asymptotic property of the solution as time goes to infinity to our Cauchy problem, and in particular, we classify the property of the solutions into three parts from the viewpoint of regularity of the initial data, that is, diffusion-like, wave-like, and both of them.
157 - M. Palese , R.A. Leo 2003
We provide an exact regular solution of an operator system arising as the prolongation structure associated with the heavenly equation. This solution is expressed in terms of operator Bessel coefficients.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا