Do you want to publish a course? Click here

Obtain Employee Turnover Rate and Optimal Reduction Strategy Based On Neural Network and Reinforcement Learning

172   0   0.0 ( 0 )
 Added by Xiaohan Cheng
 Publication date 2020
and research's language is English
 Authors Xiaohan Cheng




Ask ChatGPT about the research

Nowadays, human resource is an important part of various resources of enterprises. For enterprises, high-loyalty and high-quality talented persons are often the core competitiveness of enterprises. Therefore, it is of great practical significance to predict whether employees leave and reduce the turnover rate of employees. First, this paper established a multi-layer perceptron predictive model of employee turnover rate. A model based on Sarsa which is a kind of reinforcement learning algorithm is proposed to automatically generate a set of strategies to reduce the employee turnover rate. These strategies are a collection of strategies that can reduce the employee turnover rate the most and cost less from the perspective of the enterprise, and can be used as a reference plan for the enterprise to optimize the employee system. The experimental results show that the algorithm can indeed improve the efficiency and accuracy of the specific strategy.

rate research

Read More

51 - Edouard Ribes 2017
This paper illustrates the similarities between the problems of customer churn and employee turnover. An example of employee turnover prediction model leveraging classical machine learning techniques is developed. Model outputs are then discussed to design & test employee retention policies. This type of retention discussion is, to our knowledge, innovative and constitutes the main value of this paper.
Although there are many approaches to implement intrinsically motivated artificial agents, the combined usage of multiple intrinsic drives remains still a relatively unexplored research area. Specifically, we hypothesize that a mechanism capable of quantifying and controlling the evolution of the information flow between the agent and the environment could be the fundamental component for implementing a higher degree of autonomy into artificial intelligent agents. This paper propose a unified strategy for implementing two semantically orthogonal intrinsic motivations: curiosity and empowerment. Curiosity reward informs the agent about the relevance of a recent agent action, whereas empowerment is implemented as the opposite information flow from the agent to the environment that quantifies the agents potential of controlling its own future. We show that an additional homeostatic drive is derived from the curiosity reward, which generalizes and enhances the information gain of a classical curious/heterostatic reinforcement learning agent. We show how a shared internal model by curiosity and empowerment facilitates a more efficient training of the empowerment function. Finally, we discuss future directions for further leveraging the interplay between these two intrinsic rewards.
In real time electricity markets, the objective of generation companies while bidding is to maximize their profit. The strategies for learning optimal bidding have been formulated through game theoretical approaches and stochastic optimization problems. Similar studies in reactive power markets have not been reported so far because the network voltage operating conditions have an increased impact on reactive power markets than on active power markets. Contrary to active power markets, the bids of rivals are not directly related to fuel costs in reactive power markets. Hence, the assumption of a suitable probability distribution function is unrealistic, making the strategies adopted in active power markets unsuitable for learning optimal bids in reactive power market mechanisms. Therefore, a bidding strategy is to be learnt from market observations and experience in imperfect oligopolistic competition-based markets. In this paper, a pioneer work on learning optimal bidding strategies from observation and experience in a three-stage reactive power market is reported.
Model Order Reduction (MOR) methods enable the generation of real-time-capable digital twins, which can enable various novel value streams in industry. While traditional projection-based methods are robust and accurate for linear problems, incorporating Machine Learning to deal with nonlinearity becomes a new choice for reducing complex problems. Such methods usually consist of two steps. The first step is dimension reduction by projection-based method, and the second is the model reconstruction by Neural Network. In this work, we apply some modifications for both steps respectively and investigate how they are impacted by testing with three simulation models. In all cases Proper Orthogonal Decomposition (POD) is used for dimension reduction. For this step, the effects of generating the input snapshot database with constant input parameters is compared with time-dependent input parameters. For the model reconstruction step, two types of neural network architectures are compared: Multilayer Perceptron (MLP) and Runge-Kutta Neural Network (RKNN). The MLP learns the system state directly while RKNN learns the derivative of system state and predicts the new state as a Runge-Kutta integrator.
We establish a new connection between value and policy based reinforcement learning (RL) based on a relationship between softmax temporal value consistency and policy optimality under entropy regularization. Specifically, we show that softmax consistent action values correspond to optimal entropy regularized policy probabilities along any action sequence, regardless of provenance. From this observation, we develop a new RL algorithm, Path Consistency Learning (PCL), that minimizes a notion of soft consistency error along multi-step action sequences extracted from both on- and off-policy traces. We examine the behavior of PCL in different scenarios and show that PCL can be interpreted as generalizing both actor-critic and Q-learning algorithms. We subsequently deepen the relationship by showing how a single model can be used to represent both a policy and the corresponding softmax state values, eliminating the need for a separate critic. The experimental evaluation demonstrates that PCL significantly outperforms strong actor-critic and Q-learning baselines across several benchmarks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا