No Arabic abstract
Let $mathcal{M}$ be a type ${rm II_1}$ factor and let $tau$ be the faithful normal tracial state on $mathcal{M}$. In this paper, we prove that given an $X in mathcal{M}$, $X=X^*$, then there is a decomposition of the identity into $N in mathbb{N}$ mutually orthogonal nonzero projections $E_jinmathcal{M}$, $I=sum_{j=1}^NE_j$, such that $E_jXE_j=tau(X) E_j$ for all $j=1,cdots,N$. Equivalently, there is a unitary operator $U in mathcal{M}$ with $U^N=I$ and $frac{1}{N}sum_{j=0}^{N-1}{U^*}^jXU^j=tau(X)I.$ As the first application, we prove that a positive operator $Ain mathcal{M}$ can be written as a finite sum of projections in $mathcal{M}$ if and only if $tau(A)geq tau(R_A)$, where $R_A$ is the range projection of $A$. This result answers affirmatively Question 6.7 of [9]. As the second application, we show that if $Xin mathcal{M}$, $X=X^*$ and $tau(X)=0$, then there exists a nilpotent element $Z in mathcal{M}$ such that $X$ is the real part of $Z$. This result answers affirmatively Question 1.1 of [4]. As the third application, we show that let $X_1,cdots,X_nin mathcal{M}$. Then there exist unitary operators $U_1,cdots,U_kinmathcal{M}$ such that $frac{1}{k}sum_{i=1}^kU_i^{-1}X_jU_i=tau(X_j)I,quad forall 1leq jleq n$. This result is a stronger version of Dixmiers averaging theorem for type ${rm II}_1$ factors.
Let $M$ be a type ${rm II}$ factor and let $tau$ be the faithful positive semifinite normal trace, unique up to scalar multiples in the type ${rm II}_infty$ case and normalized by $tau(I)=1$ in the type ${rm II}_1$ case. Given $Ain M^+$, we denote by $A_+=(A-I)chi_A(1,|A|]$ the excess part of $A$ and by $A_-=(I-A)chi_A(0,1)$ the defect part of $A$. V. Kaftal, P. Ng and S. Zhang provided necessary and sufficient conditions for a positive operator to be the sum of a finite or infinite collection of projections (not necessarily mutually orthogonal) in type ${rm I}$ and type ${rm III}$ factors. For type ${rm II}$ factors, V. Kaftal, P. Ng and S. Zhang proved that $tau(A_+)geq tau(A_-)$ is a necessary condition for an operator $Ain M^+$ which can be written as the sum of a finite or infinite collection of projections and also sufficient if the operator is diagonalizable. In this paper, we prove that if $Ain M^+$ and $tau(A_+)geq tau(A_-)$, then $A$ can be written as the sum of a finite or infinite collection of projections. This result answers affirmatively a question raised by V. Kaftal, P. Ng and S. Zhang.
The Wigners theorem, which is one of the cornerstones of the mathematical formulation of quantum mechanics, asserts that every symmetry of quantum system is unitary or anti-unitary. This classical result was first given by Wigner in 1931. Thereafter it has been proved and generalized in various ways by many authors. Recently, G. P. Geh{e}r extended Wigners and Moln{a}rs theorems and characterized the transformations on the Grassmann space of all rank-$n$ projections which preserve the transition probability. The aim of this paper is to provide a new approach to describe the general form of the transition probability preserving (not necessarily bijective) maps between Grassmann spaces. As a byproduct, we are able to generalize the results of Moln{a}r and G. P. Geh{e}r.
Let $Gamma$ be a discrete group satisfying the approximation property (AP). Let $X$, $Y$ be $Gamma$-spaces and $pi colon Y to X$ be a proper factor map which is injective on the non-free part. We prove the one-to-one correspondence between intermediate ${rm C}^ast$-algebras of $C_0(X) rtimes_r Gamma subset C_0(Y) rtimes Gamma$ and intermediate $Gamma$-${rm C}^ast$-algebras of $C_0(X) subset C_0(Y)$. This is a generalization of Suzukis theorem that proves the statement for free actions.
We develop a symbol calculus for normal bimodule maps over a masa that is the natural analogue of the Schur product theory. Using this calculus we are able to easily give a complete description of the ranges of contractive normal bimodule idempotents that avoids the theory of J*-algebras. We prove that if $P$ is a normal bimodule idempotent and $|P| < 2/sqrt{3}$ then $P$ is a contraction. We finish with some attempts at extending the symbol calculus to non-normal maps.
We study refinements between spectral resolutions in an arbitrary II$_1$ factor $M$ and obtain diffuse (maximal) refinements of spectral resolutions. We construct models of operators with respect to diffuse spectral resolutions. As an application we obtain new characterizations of sub-majorization and spectral preorder between positive operators in $M$ and n