No Arabic abstract
Let $Gamma$ be a discrete group satisfying the approximation property (AP). Let $X$, $Y$ be $Gamma$-spaces and $pi colon Y to X$ be a proper factor map which is injective on the non-free part. We prove the one-to-one correspondence between intermediate ${rm C}^ast$-algebras of $C_0(X) rtimes_r Gamma subset C_0(Y) rtimes Gamma$ and intermediate $Gamma$-${rm C}^ast$-algebras of $C_0(X) subset C_0(Y)$. This is a generalization of Suzukis theorem that proves the statement for free actions.
This paper introduces the notion of Rota-Baxter $C^{ast}$-algebras. Here a Rota-Baxter $C^{ast}$-algebra is a $C^{ast}$-algebra with a Rota-Baxter operator. Symmetric Rota-Baxter operators, as special cases of Rota-Baxter operators on $C^{ast}$-algebra, are defined and studied. A theorem of Rota-Baxter operators on concrete $C^{ast}$-algebras is given, deriving the relationship between two kinds of Rota-Baxter algebras. As a corollary, some connection between $ast$-representations and Rota-Baxter operators is given. The notion of representations of Rota-Baxter $C^{ast}$-algebras are constructed, and a theorem of representations of direct sums of Rota-Baxter representations is derived. Finally using Rota-Baxter operators, the notion of quasidiagonal operators on $C^{ast}$-algebra is reconstructed.
The program of matrix product states on the infinite tensor product ${mathcal A}^{otimes mathbb Z}$, initiated by Fannes, Nachtergaele and Werner in their seminal paper Commun. Math. Phys. Vol. 144, 443-490 (1992), is re-assessed in a context where $mathcal A$ is an infinite nuclear $C^ast$-algebra. While this setting presents new technical challenges, fine advances on ordered spaces by Kavruk, Paulsen, Todorov and Tomforde enabled us to push through most of the program and to demonstrate that the matrix product states accept generalizations as operator product states.
We give some sufficient conditions for the injectivity of actions of compact quantum groups on $C^{ast}$-algebra. As an application, we prove that any faithful smooth action by a compact quantum group on a compact smooth (not necessarily connected) manifold is injective. A similar result is proved for actions on $C^{ast}$- algebras obtained by Rieffel-deformation of compact, smooth manifolds.
We construct a functor that maps $C^*$-correspondences to their Cuntz-Pimsner algebras. The objects in our domain category are $C^*$-correspondences, and the morphisms are the isomorphism classes of $C^*$-correspondences satisfying certain conditions. As an application, we recover a well-known result of Muhly and Solel. In fact, we show that functoriality leads us to a more generalized result: strongly Morita equivalent $C^*$-correspondences have Morita equivalent Cuntz-Pimsner algebras.
The spectral functor of an ergodic action of a compact quantum group G on a unital C*-algebra is quasitensor, in the sense that the tensor product of two spectral subspaces is isometrically contained in the spectral subspace of the tensor product representation, and the inclusion maps satisfy natural properties. We show that any quasitensor *-functor from Rep(G) to the category of Hilbert spaces is the spectral functor of an ergodic action of G on a unital C*-algebra. As an application, we associate an ergodic G-action on a unital C*-algebra to an inclusion of Rep(G) into an abstract tensor C*-category. If the inclusion arises from a quantum subgroup of G, the associated G-system is just the quantum quotient space. If G is a group and the category has permutation symmetry, the associated system is commutative, and therefore isomorphic to the classical quotient space by a closed subgroup of $G$. If a tensor C*-category has a Hecke symmetry making an object of dimension d and q-quantum determinant one then there is an ergodic action of S_qU(d) on a unital C*-algebra, having the spaces of intertwiners from the tensor unit to powers of the object as its spectral subspaces. The special case od S_qU(2) is discussed.