Do you want to publish a course? Click here

Floquet Second Order Topological Superconductor based on Unconventional Pairing

122   0   0.0 ( 0 )
 Added by Arijit Saha
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically investigate the Floquet generation of second-order topological superconducting (SOTSC) phase in the high-temperature platform both in two-dimension (2D) and three-dimension (3D). Starting from a $d$-wave superconducting pairing gap, we periodically kick the mass term to engineer the dynamical SOTSC phase within a specific range of the strength of the drive. Under such dynamical breaking of time-reversal symmetry (TRS), we show the emergence of the textit{weak} SOTSC phase, harboring eight corner modes ie two zero-energy Majorana per corner, with vanishing Floquet quadrupole moment. On the other hand, our study interestingly indicates that upon the introduction of an explicit TRS breaking Zeeman field, the textit{weak} SOTSC phase can be transformed into textit{strong} SOTSC phase, hosting one zero-energy Majorana mode per corner, with quantized quadrupole moment. We also compute the Floquet Wannier spectra that further establishes the textit{weak} and textit{strong} nature of these phases. We numerically verify our protocol computing the exact Floquet operator in open boundary condition and then analytically validate our findings with the low energy effective theory (in the high-frequency limit). The above protocol is applicable for 3D as well where we find one dimensional (1D) hinge mode in the SOTSC phase. We then show that these corner modes are robust against moderate disorder and the topological invariants continue to exhibit quantized nature until disorder becomes substantially strong. The existence of zero-energy Majorana modes in these higher-order phases is guaranteed by the anti-unitary spectral symmetry.



rate research

Read More

169 - Xiaoyu Zhu 2018
We show that a two-dimensional semiconductor with Rashba spin-orbit coupling could be driven into the second-order topological superconducting phase when a mixed-pairing state is introduced. The superconducting order we consider involves only even-parity components and meanwhile breaks time-reversal symmetry. As a result, each corner of a square-shaped Rashba semiconductor would host one single Majorana zero mode in the second-order nontrivial phase. Starting from edge physics, we are able to determine the phase boundaries accurately. A simple criterion for the second-order phase is further established, which concerns the relative position between Fermi surfaces and nodal points of the superconducting order parameter. In the end, we propose two setups that may bring this mixed-pairing state into the Rashba semiconductor, followed by a brief discussion on the experimental feasibility of the two platforms.
We theoretically investigate the Floquet generation of second-order topological superconducting (SOTSC) phase, hosting Majorana corner modes (MCMs), considering a quantum spin Hall insulator (QSHI) with proximity induced superconducting $s$-wave pairing in it. Our dynamical prescription consists of the periodic kick in time-reversal symmetry breaking in-plane magnetic field and four-fold rotational symmetry breaking mass term while these Floquet MCMs are preserved by anti-unitary particle-hole symmetry. The first driving protocol always leads to four zero energy MCMs (i.e. one Majorana per corner) as a sign of a {it{strong}} SOTSC phase. Interestingly, the second protocol can result in a {it{weak}} SOTSC phase, harbouring eight zero energy MCMs (two Majorana states per corner), in addition to the {it{strong}} SOTSC phase. We characterize the topological nature of these phases by Floquet quadrupolar moment and Floquet Wannier spectrum. We believe that relying on the recent experimental advancement in the driven systems and proximity induced superconductivity, our schemes may be possible to test in the future.
Two-dimensional second-order topological superconductors (SOTSCs) have gapped bulk and edge states, with zero-energy Majorana bound states localized at corners. Motivated by recent advances in Majorana nanowire experiments, we propose to realize a tunable SOTSC as a two-dimensional nanowire array. We show that the coupling between the Majorana modes of adjacent wires can be controlled by phase-biasing the device, allowing to access a variety of topological phases. We characterize the system using scattering theory, which provides access to its transport properties and its topological invariants. The setup is robust against disorder, both in the nanowires themselves and in the Josephson junctions formed between adjacent wires. Further, we identify a parameter regime in which an initially trivial system is rendered topological upon adding disorder, providing an example of a second-order topological Anderson phase.
The magnetic flux periodicity of $frac{hc}{2e}$ is a well known manifestation of Cooper pairing in typical s-wave superconductors. In this paper we theoretically show that the flux periodicity of a two-dimensional second-order topological superconductor, which features zero-energy Majorana modes localized at the corners of the sample, is $frac{hc}{e}$ instead. We further show that the periodicity changes back to $frac{hc}{2e}$ at the transition to a topologically trivial superconductor, where the Majorana modes hybridize with the bulk states, demonstrating that the doubling of periodicity is a manifestation of the non-trivial topology of the state.
144 - Ryoi Ohashi , Shingo Kobayashi , 2021
Quantum anomalous Hall insulator (QAH)/$s$-wave superconductor (SC) hybrid systems are known to be an ideal platform for realizing two-dimensional topological superconductors with chiral Majorana edge modes. In this paper we study QAH/unconventional SC hybrid systems whose pairing symmetry is $p$-wave, $d$-wave, chiral $p$-wave, or chiral $d$-wave. The hybrid systems are a generalization of the QAH/$s$-wave SC hybrid system. In view of symmetries of the QAH and pairings, we introduce three topological numbers to classify topological phases of the hybrid systems. One is the Chern number that characterizes chiral Majorana edge modes and the others are topological numbers associated with crystalline symmetries. We numerically calculate the topological numbers and associated surface states for three characteristic regimes that feature an influence of unconventional SCs on QAHs. Our calculation shows a rich variety of topological phases and unveils the following topological phases that are no counterpart of the $s$-wave case: crystalline symmetry-protected helical Majorana edge modes, a line node phase (crystalline-symmetry-protected Bogoliubov Fermi surface), and multiple chiral Majorana edge modes. The phenomena result from a nontrivial topological interplay between the QAH and unconventional SCs. Finally, we discuss tunnel conductance in a junction between a normal metal and the hybrid systems, and show that the chiral and helical Majorana edge modes are distinguishable in terms of the presence/absence of zero-bias conductance peak.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا