Do you want to publish a course? Click here

Possible topological phases in quantum anomalous Hall insulator/unconventional superconductor hybrid systems

145   0   0.0 ( 0 )
 Added by Shingo Kobayashi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum anomalous Hall insulator (QAH)/$s$-wave superconductor (SC) hybrid systems are known to be an ideal platform for realizing two-dimensional topological superconductors with chiral Majorana edge modes. In this paper we study QAH/unconventional SC hybrid systems whose pairing symmetry is $p$-wave, $d$-wave, chiral $p$-wave, or chiral $d$-wave. The hybrid systems are a generalization of the QAH/$s$-wave SC hybrid system. In view of symmetries of the QAH and pairings, we introduce three topological numbers to classify topological phases of the hybrid systems. One is the Chern number that characterizes chiral Majorana edge modes and the others are topological numbers associated with crystalline symmetries. We numerically calculate the topological numbers and associated surface states for three characteristic regimes that feature an influence of unconventional SCs on QAHs. Our calculation shows a rich variety of topological phases and unveils the following topological phases that are no counterpart of the $s$-wave case: crystalline symmetry-protected helical Majorana edge modes, a line node phase (crystalline-symmetry-protected Bogoliubov Fermi surface), and multiple chiral Majorana edge modes. The phenomena result from a nontrivial topological interplay between the QAH and unconventional SCs. Finally, we discuss tunnel conductance in a junction between a normal metal and the hybrid systems, and show that the chiral and helical Majorana edge modes are distinguishable in terms of the presence/absence of zero-bias conductance peak.



rate research

Read More

Topological phases of matter that depend for their existence on interactions are fundamentally interesting and potentially useful as platforms for future quantum computers. Despite the multitude of theoretical proposals the only interaction-enabled topological phase experimentally observed is the fractional quantum Hall liquid. To help identify other systems that can give rise to such phases we present in this work a detailed study of the effect of interactions on Majorana zero modes bound to vortices in a superconducting surface of a 3D topological insulator. This system is of interest because, as was recently pointed out, it can be tuned into the regime of strong interactions. We start with a 0D system suggesting an experimental realization of the interaction-induced $mathbb{Z}_8$ ground state periodicity previously discussed by Fidkowski and Kitaev. We argue that the periodicity is experimentally observable using a tunnel probe. We then focus on interaction-enabled crystalline topological phases that can be built with the Majoranas in a vortex lattice in higher dimensions. In 1D we identify an interesting exactly solvable model which is related to a previously discussed one that exhibits an interaction-enabled topological phase. We study these models using analytical techniques, exact numerical diagonalization (ED) and density matrix renormalization group (DMRG). Our results confirm the existence of the interaction-enabled topological phase and clarify the nature of the quantum phase transition that leads to it. We finish with a discussion of models in dimensions 2 and 3 that produce similar interaction-enabled topological phases.
208 - M. N. Chen , W. C. Chen , 2021
In this work, we propose a ferromagnetic Bi$_2$Se$_3$ as a candidate to hold the coexistence of Weyl- and nodal-line semimetal phases, which breaks the time reversal symmetry. We demonstrate that the type-I Weyl semimetal phase, type-I-, type-II- and their hybrid nodal-line semimetal phases can arise by tuning the Zeeman exchange field strength and the Fermi velocity. Their topological responses under U(1) gauge field are also discussed. Our results raise a new way for realizing Weyl and nodal-line semimetals and will be helpful in understanding the topological transport phenomena in three-dimensional material systems.
In this work, we demonstrate that making a cut (a narrow vacuum regime) in the bulk of a quantum anomalous Hall insulator (QAHI) creates a topologically protected single helical channel with counter-propagating electron modes, and inducing superconductivity on the helical channel through proximity effect will create Majorana zero energy modes (MZMs) at the ends of the cut. In this geometry, there is no need for the proximity gap to overcome the bulk insulating gap of the QAHI to create MZMs as in the two-dimensional QAHI/superconductor (QAHI/SC) heterostructures. Therefore, the topological regime with MZMs is greatly enlarged. Furthermore, due to the presence of a single helical channel, the generation of low energy in-gap bound states caused by multiple conducting channels is avoided such that the MZMs can be well separated from other in-gap excitations in energy. This simple but practical approach allows the creation of a large number of MZMs in devices with complicated geometry such as hexons for measurement-based topological quantum computation. We further demonstrate how braiding of MZMs can be performed by controlling the coupling strength between the counter-propagating electron modes.
100 - Peng Chen , Yong Zhang , Qi Yao 2019
Engineering the anomalous Hall effect (AHE) in the emerging magnetic topological insulators (MTIs) has great potentials for quantum information processing and spintronics applications. In this letter, we synthesize the epitaxial Bi2Te3/MnTe magnetic heterostructures and observe pronounced AHE signals from both layers combined together. The evolution of the resulting hybrid AHE intensity with the top Bi2Te3 layer thickness manifests the presence of an intrinsic ferromagnetic phase induced by the topological surface states at the heterolayer-interface. More importantly, by doping the Bi2Te3 layer with Sb, we are able to manipulate the sign of the Berry phase-associated AHE component. Our results demonstrate the un-paralleled advantages of MTI heterostructures over magnetically doped TI counterparts, in which the tunability of the AHE response can be greatly enhanced. This in turn unveils a new avenue for MTI heterostructure-based multifunctional applications.
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Doping topological insulators with random magnetic impurities could realize the QAH state, but magnetic order is difficult to establish experimentally in the bulk insulating limit. Here we predict that the single quintuple layer of GdBiTe3 film could be a stoichiometric QAH insulator based on ab-initio calculations, which explicitly demonstrate ferromagnetic order and chiral edge states inside the bulk gap. We further investigate the topological quantum phase transition by tuning the lattice constant and interactions. A simple low-energy effective model is presented to capture the salient physical feature of this topological material.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا