Do you want to publish a course? Click here

The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices

78   0   0.0 ( 0 )
 Added by Markus Fleschutz
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Price-based demand response (PBDR) has recently been attributed great economic but also environmental potential. However, the determination of its short-term effects on carbon emissions requires the knowledge of marginal emission factors (MEFs), which compared to grid mix emission factors (XEFs), are cumbersome to calculate due to the complex characteristics of national electricity markets. This study, therefore, proposes two merit order-based methods to approximate hourly MEFs and applies it to readily available datasets from 20 European countries for the years 2017-2019. Based on the resulting electricity prices, MEFs, and XEFs, standardized daily load shifts were simulated to quantify their effects on marginal costs and carbon emissions. Finally, by repeating the load shift simulations for different carbon price levels, the impact of the carbon price on the resulting carbon emissions was analyzed. Interestingly, the simulated price-based load shifts led to increases in operational carbon emissions for 8 of the 20 countries and to an average increase of 2.1% across all 20 countries. Switching from price-based to MEF-based load shifts reduced the corresponding carbon emissions to a decrease of 35%, albeit with 56% lower monetary cost savings compared to the price-based load shifts. Under specific circumstances, PBDR leads to an increase in carbon emissions, mainly due to the economic advantage fuel sources such as lignite and coal have in the merit order. However, as the price of carbon is increased, the correlation between the carbon intensity and the marginal cost of the fuels substantially increases. Therefore, with adequate carbon prices, PBDR can be an effective tool for both economical and environmental improvement.



rate research

Read More

Electricity accounts for 25% of global greenhouse gas emissions. Reducing emissions related to electricity consumption requires accurate measurements readily available to consumers, regulators and investors. In this case study, we propose a new real-time consumption-based accounting approach based on flow tracing. This method traces power flows from producer to consumer thereby representing the underlying physics of the electricity system, in contrast to the traditional input-output models of carbon accounting. With this method we explore the hourly structure of electricity trade across Europe in 2017, and find substantial differences between production and consumption intensities. This emphasizes the importance of considering cross-border flows for increased transparency regarding carbon emission accounting of electricity.
Averting the effects of anthropogenic climate change requires a transition from fossil fuels to low-carbon technology. A way to achieve this is to decarbonize the electricity grid. However, further efforts must be made in other fields such as transport and heating for full decarbonization. This would reduce carbon emissions due to electricity generation, and also help to decarbonize other sources such as automotive and heating by enabling a low-carbon alternative. Carbon taxes have been shown to be an efficient way to aid in this transition. In this paper, we demonstrate how to to find optimal carbon tax policies through a genetic algorithm approach, using the electricity market agent-based model ElecSim. To achieve this, we use the NSGA-II genetic algorithm to minimize average electricity price and relative carbon intensity of the electricity mix. We demonstrate that it is possible to find a range of carbon taxes to suit differing objectives. Our results show that we are able to minimize electricity cost to below textsterling10/MWh as well as carbon intensity to zero in every case. In terms of the optimal carbon tax strategy, we found that an increasing strategy between 2020 and 2035 was preferable. Each of the Pareto-front optimal tax strategies are at least above textsterling81/tCO2 for every year. The mean carbon tax strategy was textsterling240/tCO2.
Renewable-dominant power systems explore options to procure virtual inertia services from non-synchronous resources (e.g., batteries, wind turbines) in addition to inertia traditionally provided by synchronous resources (e.g., thermal generators). This paper designs a stochastic electricity market that produces co-optimized and efficient prices for energy, reserve and inertia. We formulate a convex chance-constrained stochastic unit commitment model with inertia requirements and obtain equilibrium energy, reserve and inertia prices using convex duality. Numerical experiments on an illustrative system and a modified IEEE 118-bus systems show the performance of the proposed pricing mechanism.
The proposed open-source Power Market Tool (POMATO) aims to enable research on interconnected modern and future electricity markets in the context of the physical transmission system and its secure operation. POMATO has been designed to study capacity allocation and congestion management (CACM) policies of European zonal electricity markets, especially flow-based market coupling (FBMC). For this purpose, POMATO implements methods for the analysis of simultaneous zonal market clearing, nodal (N-k secure) power flow computation for capacity allocation, and multi-stage market clearing with adaptive grid representation and redispatch. The computationally demanding N-k secure power flow is enabled via an efficient constraint reduction algorithm. POMATO provides an integrated environment for data read-in, pre- and post-processing and interactive result visualization. Comprehensive data sets of European electricity systems compiled from Open Power System Data and Matpower Cases are part of the distribution. POMATO is implemented in Python and Julia, leveraging Pythons easily maintainable data processing and user interaction features and Julias well readable algebraic modeling language, superior computational performance and interfaces to open-source and commercial solvers.
75 - Rene Aid , Andrea Cosso 2020
We formulate an equilibrium model of intraday trading in electricity markets. Agents face balancing constraints between their customers consumption plus intraday sales and their production plus intraday purchases. They have continuously updated forecast of their customers consumption at maturity with decreasing volatility error. Forecasts are prone to idiosyncratic noise as well as common noise (weather). Agents production capacities are subject to independent random outages, which are each modelled by a Markov chain. The equilibrium price is defined as the price that minimises trading cost plus imbalance cost of each agent and satisfies the usual market clearing condition. Existence and uniqueness of the equilibrium are proved, and we show that the equilibrium price and the optimal trading strategies are martingales. The main economic insights are the following. (i) When there is no uncertainty on generation, it is shown that the market price is a convex combination of forecasted marginal cost of each agent, with deterministic weights. Furthermore, the equilibrium market price follows Almgren and Chrisss model and we identify the fundamental part as well as the permanent market impact. It turns out that heterogeneity across agents is a necessary condition for the Samuelsons effect to hold. (ii) When there is production uncertainty, the price volatility becomes stochastic but converges to the case without production uncertainty when the number of agents increases to infinity. Further, on a two-agent case, we show that the potential outages of a low marginal cost producer reduces her sales position.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا