Do you want to publish a course? Click here

Average Doppler Shift of Gamma-ray Spectra of Positron Annihilation Process in Molecules

166   0   0.0 ( 0 )
 Added by Xiaoguang Ma
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper studies the gamma-ray spectra of positron annihilation processes in a series of molecules. The results show that the average valence electron energy of the molecules has a linear correlation with the full width at half maximum (FWHM) of the gamma-ray spectra. In addition, we defined a new physical quantity Average Doppler Shift (ADS), which can be used as the eigenvalue to describe the characteristics of the gamma-ray spectra. Since ADS contains all the information about the gamma-ray spectra, it can more accurately represent the characteristics of the gamma-ray spectra. For a series of molecules, this paper compares the ADS and FWHM of their gamma-ray spectra and the average valence electron energy. The results show that ADS has a linear correlation with the average valence electron energy and the FWHM. Further, this proves that the annihilation mainly occurs on valence electrons, and it also illustrates that the ADS has certain applicability. It is expected that this will provide us with a deeper understanding of the positron annihilation process.



rate research

Read More

We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($lambdaapprox130 text{pm}$) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the CSPAD detector and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to within 5 %. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data which should be readily available at upcoming high-repetition-rate facilities.
We present the first measurement of a one-photon extreme-ultraviolet photoelectron spectrum (PES) of molecules embedded in superfluid helium nanodroplets. The PES of coronene is compared to gas phase and the solid phase PES, and to electron spectra of embedded coronene generated by charge transfer and Penning ionization through ionized or excited helium. The resemblence of the He-droplet PES to the one of the solid phase indicates that mostly Cor clusters are photoionized. In contrast, the He-droplet Penning-ionization electron spectrum is nearly structureless, indicating strong perturbation of the ionization process by the He droplet. These results pave the way to extreme ultraviolet photoelectron spectroscopy (UPS) of clusters and molecular complexes embedded in helium nanodroplets.
158 - Roland Diehl , Mark Leising 2009
SPI on INTEGRAL has provided spectra and a map of the sky in the emission from annihilations of positrons in the interstellar medium of our Galaxy. From high-resolution spectra we learned that a warm, partially-ionized medium is the site where the observed gamma-rays originate. The gamma-ray emission map shows a major puzzle for broader astrophysics topics, as it is dominated by a bright and extended apparently spherical emission region centered in the Galaxys center. Only recently has the disk of the Galaxy been detected with SPI. This may be regarded as confirmation of earlier expectations that positrons should arise predominantly from sources of nucleosynthesis distributed throughout the plane of the Galaxy, which produce proton-rich unstable isotopes. But there are other plausible sources of positrons, among them pulsars and accreting binaries such as microquasars. SPI results may be interpreted also as hints that these are more significant as positron sources on the Galactic scale than thought before, in the plane and therefore also in the bulge of the Galaxy. This is part of the attempt to understand the surprisingly-bright emission from the central region in the Galaxy, which otherwise also could be interpreted as a first rather direct detection of dark matter annihilations in the Galaxys gravitational well. INTEGRAL has a unique potential to shed light on the various aspects of positron astrophysics, through its capability for imaging spectroscopy.
The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field adiabatically, i.e., with a previously fixed distribution of rotational states. We discuss the orientation of rigid symmetric-top systems with a body-fixed electric or magnetic dipole moment. The analytical expression for their adiabatic-entry orientation is elucidated and compared with exact numerical results for a range of parameters. The differences between the polarization of thermodynamic and adiabatic-entry ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators are illustrated and identified.
In this work we define single-particle potentials for a positron and a positronium atom interacting with light atoms (H, He, Li and Be) by inverting a single-particle Schrodinger equation. For this purpose, we use accurate energies and positron densities obtained from the many-body wavefunction of the corresponding positronic systems. The introduced potentials describe the exact correlations for the calculated systems including the formation of a positronium atom. We show that the scattering lengths and the low-energy s-wave phase shifts from accurate many-body calculations are well accounted for by the introduced potential. We also calculate self-consistent two-component density-functional theory positron potentials and densities for the bound positronic systems within the local density approximation. They are in a very good agreement with the many-body results, provided that the finite-positron-density electron-positron correlation potential is used, and they can also describe systems comprising a positronium atom. We argue that the introduced single-particle positron potentials defined for single molecules are transferable to the condensed phase when the inter-molecular interactions are weak. When this condition is fulfilled, the total positron potential can be constructed in a good approximation as the superposition of the molecular potentials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا