No Arabic abstract
Online image hashing has received increasing research attention recently, which processes large-scale data in a streaming fashion to update the hash functions on-the-fly. To this end, most existing works exploit this problem under a supervised setting, i.e., using class labels to boost the hashing performance, which suffers from the defects in both adaptivity and efficiency: First, large amounts of training batches are required to learn up-to-date hash functions, which leads to poor online adaptivity. Second, the training is time-consuming, which contradicts with the core need of online learning. In this paper, a novel supervised online hashing scheme, termed Fast Class-wise Updating for Online Hashing (FCOH), is proposed to address the above two challenges by introducing a novel and efficient inner product operation. To achieve fast online adaptivity, a class-wise updating method is developed to decompose the binary code learning and alternatively renew the hash functions in a class-wise fashion, which well addresses the burden on large amounts of training batches. Quantitatively, such a decomposition further leads to at least 75% storage saving. To further achieve online efficiency, we propose a semi-relaxation optimization, which accelerates the online training by treating different binary constraints independently. Without additional constraints and variables, the time complexity is significantly reduced. Such a scheme is also quantitatively shown to well preserve past information during updating hashing functions. We have quantitatively demonstrated that the collective effort of class-wise updating and semi-relaxation optimization provides a superior performance comparing to various state-of-the-art methods, which is verified through extensive experiments on three widely-used datasets.
With the rapid development of social websites, recent years have witnessed an explosive growth of social images with user-provided tags which continuously arrive in a streaming fashion. Due to the fast query speed and low storage cost, hashing-based methods for image search have attracted increasing attention. However, existing hashing methods for social image retrieval are based on batch mode which violates the nature of social images, i.e., social images are usually generated periodically or collected in a stream fashion. Although there exist many online image hashing methods, they either adopt unsupervised learning which ignore the relevant tags, or are designed in the supervised manner which needs high-quality labels. In this paper, to overcome the above limitations, we propose a new method named Weakly-supervised Online Hashing (WOH). In order to learn high-quality hash codes, WOH exploits the weak supervision by considering the semantics of tags and removing the noise. Besides, We develop a discrete online optimization algorithm for WOH, which is efficient and scalable. Extensive experiments conducted on two real-world datasets demonstrate the superiority of WOH compared with several state-of-the-art hashing baselines.
Hashing technology has been widely used in image retrieval due to its computational and storage efficiency. Recently, deep unsupervised hashing methods have attracted increasing attention due to the high cost of human annotations in the real world and the superiority of deep learning technology. However, most deep unsupervised hashing methods usually pre-compute a similarity matrix to model the pairwise relationship in the pre-trained feature space. Then this similarity matrix would be used to guide hash learning, in which most of the data pairs are treated equivalently. The above process is confronted with the following defects: 1) The pre-computed similarity matrix is inalterable and disconnected from the hash learning process, which cannot explore the underlying semantic information. 2) The informative data pairs may be buried by the large number of less-informative data pairs. To solve the aforementioned problems, we propose a Deep Self-Adaptive Hashing (DSAH) model to adaptively capture the semantic information with two special designs: Adaptive Neighbor Discovery (AND) and Pairwise Information Content (PIC). Firstly, we adopt the AND to initially construct a neighborhood-based similarity matrix, and then refine this initial similarity matrix with a novel update strategy to further investigate the semantic structure behind the learned representation. Secondly, we measure the priorities of data pairs with PIC and assign adaptive weights to them, which is relies on the assumption that more dissimilar data pairs contain more discriminative information for hash learning. Extensive experiments on several datasets demonstrate that the above two technologies facilitate the deep hashing model to achieve superior performance.
Few-shot image classification (FSIC), which requires a model to recognize new categories via learning from few images of these categories, has attracted lots of attention. Recently, meta-learning based methods have been shown as a promising direction for FSIC. Commonly, they train a meta-learner (meta-learning model) to learn easy fine-tuning weight, and when solving an FSIC task, the meta-learner efficiently fine-tunes itself to a task-specific model by updating itself on few images of the task. In this paper, we propose a novel meta-learning based layer-wise adaptive updating (LWAU) method for FSIC. LWAU is inspired by an interesting finding that compared with common deep models, the meta-learner pays much more attention to update its top layer when learning from few images. According to this finding, we assume that the meta-learner may greatly prefer updating its top layer to updating its bottom layers for better FSIC performance. Therefore, in LWAU, the meta-learner is trained to learn not only the easy fine-tuning model but also its favorite layer-wise adaptive updating rule to improve its learning efficiency. Extensive experiments show that with the layer-wise adaptive updating rule, the proposed LWAU: 1) outperforms existing few-shot classification methods with a clear margin; 2) learns from few images more efficiently by at least 5 times than existing meta-learners when solving FSIC.
We propose an unsupervised hashing method which aims to produce binary codes that preserve the ranking induced by a real-valued representation. Such compact hash codes enable the complete elimination of real-valued feature storage and allow for significant reduction of the computation complexity and storage cost of large-scale image retrieval applications. Specifically, we learn a neural network-based model, which transforms the input representation into a binary representation. We formalize the training objective of the network in an intuitive and effective way, considering each training sample as a query and aiming to obtain the same retrieval results using the produced hash codes as those obtained with the original features. This training formulation directly optimizes the hashing model for the target usage of the hash codes it produces. We further explore the addition of a decoder trained to obtain an approximated reconstruction of the original features. At test time, we retrieved the most promising database samples with an efficient graph-based search procedure using only our hash codes and perform re-ranking using the reconstructed features, thus without needing to access the original features at all. Experiments conducted on multiple publicly available large-scale datasets show that our method consistently outperforms all compared state-of-the-art unsupervised hashing methods and that the reconstruction procedure can effectively boost the search accuracy with a minimal constant additional cost.
Image hash algorithms generate compact binary representations that can be quickly matched by Hamming distance, thus become an efficient solution for large-scale image retrieval. This paper proposes RV-SSDH, a deep image hash algorithm that incorporates the classical VLAD (vector of locally aggregated descriptors) architecture into neural networks. Specifically, a novel neural network component is formed by coupling a random VLAD layer with a latent hash layer through a transform layer. This component can be combined with convolutional layers to realize a hash algorithm. We implement RV-SSDH as a point-wise algorithm that can be efficiently trained by minimizing classification error and quantization loss. Comprehensive experiments show this new architecture significantly outperforms baselines such as NetVLAD and SSDH, and offers a cost-effective trade-off in the state-of-the-art. In addition, the proposed random VLAD layer leads to satisfactory accuracy with low complexity, thus shows promising potentials as an alternative to NetVLAD.