Do you want to publish a course? Click here

Weakly-Supervised Online Hashing

120   0   0.0 ( 0 )
 Added by Yu-Wei Zhan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

With the rapid development of social websites, recent years have witnessed an explosive growth of social images with user-provided tags which continuously arrive in a streaming fashion. Due to the fast query speed and low storage cost, hashing-based methods for image search have attracted increasing attention. However, existing hashing methods for social image retrieval are based on batch mode which violates the nature of social images, i.e., social images are usually generated periodically or collected in a stream fashion. Although there exist many online image hashing methods, they either adopt unsupervised learning which ignore the relevant tags, or are designed in the supervised manner which needs high-quality labels. In this paper, to overcome the above limitations, we propose a new method named Weakly-supervised Online Hashing (WOH). In order to learn high-quality hash codes, WOH exploits the weak supervision by considering the semantics of tags and removing the noise. Besides, We develop a discrete online optimization algorithm for WOH, which is efficient and scalable. Extensive experiments conducted on two real-world datasets demonstrate the superiority of WOH compared with several state-of-the-art hashing baselines.



rate research

Read More

We propose an incremental strategy for learning hash functions with kernels for large-scale image search. Our method is based on a two-stage classification framework that treats binary codes as intermediate variables between the feature space and the semantic space. In the first stage of classification, binary codes are considered as class labels by a set of binary SVMs; each corresponds to one bit. In the second stage, binary codes become the input space of a multi-class SVM. Hash functions are learned by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from a previously unseen class, we describe an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate the effectiveness of the proposed hashing method, Supervised Incremental Hashing (SIH), over the state-of-the-art supervised hashing methods.
114 - Mingfei Gao , Yingbo Zhou , Ran Xu 2020
Online action detection in untrimmed videos aims to identify an action as it happens, which makes it very important for real-time applications. Previous methods rely on tedious annotations of temporal action boundaries for training, which hinders the scalability of online action detection systems. We propose WOAD, a weakly supervised framework that can be trained using only video-class labels. WOAD contains two jointly-trained modules, i.e., temporal proposal generator (TPG) and online action recognizer (OAR). Supervised by video-class labels, TPG works offline and targets at accurately mining pseudo frame-level labels for OAR. With the supervisory signals from TPG, OAR learns to conduct action detection in an online fashion. Experimental results on THUMOS14, ActivityNet1.2 and ActivityNet1.3 show that our weakly-supervised method largely outperforms weakly-supervised baselines and achieves comparable performance to the previous strongly-supervised methods. Beyond that, WOAD is flexible to leverage strong supervision when it is available. When strongly supervised, our method obtains the state-of-the-art results in the tasks of both online per-frame action recognition and online detection of action start.
Hashing produces compact representations for documents, to perform tasks like classification or retrieval based on these short codes. When hashing is supervised, the codes are trained using labels on the training data. This paper first shows that the evaluation protocols used in the literature for supervised hashing are not satisfactory: we show that a trivial solution that encodes the output of a classifier significantly outperforms existing supervised or semi-supervised methods, while using much shorter codes. We then propose two alternative protocols for supervised hashing: one based on retrieval on a disjoint set of classes, and another based on transfer learning to new classes. We provide two baseline methods for image-related tasks to assess the performance of (semi-)supervised hashing: without coding and with unsupervised codes. These baselines give a lower- and upper-bound on the performance of a supervised hashing scheme.
Online image hashing has received increasing research attention recently, which processes large-scale data in a streaming fashion to update the hash functions on-the-fly. To this end, most existing works exploit this problem under a supervised setting, i.e., using class labels to boost the hashing performance, which suffers from the defects in both adaptivity and efficiency: First, large amounts of training batches are required to learn up-to-date hash functions, which leads to poor online adaptivity. Second, the training is time-consuming, which contradicts with the core need of online learning. In this paper, a novel supervised online hashing scheme, termed Fast Class-wise Updating for Online Hashing (FCOH), is proposed to address the above two challenges by introducing a novel and efficient inner product operation. To achieve fast online adaptivity, a class-wise updating method is developed to decompose the binary code learning and alternatively renew the hash functions in a class-wise fashion, which well addresses the burden on large amounts of training batches. Quantitatively, such a decomposition further leads to at least 75% storage saving. To further achieve online efficiency, we propose a semi-relaxation optimization, which accelerates the online training by treating different binary constraints independently. Without additional constraints and variables, the time complexity is significantly reduced. Such a scheme is also quantitatively shown to well preserve past information during updating hashing functions. We have quantitatively demonstrated that the collective effort of class-wise updating and semi-relaxation optimization provides a superior performance comparing to various state-of-the-art methods, which is verified through extensive experiments on three widely-used datasets.
Hashing has been recognized as an efficient representation learning method to effectively handle big data due to its low computational complexity and memory cost. Most of the existing hashing methods focus on learning the low-dimensional vectorized binary features based on the high-dimensional raw vectorized features. However, studies on how to obtain preferable binary codes from the original 2D image features for retrieval is very limited. This paper proposes a bilinear supervised discrete hashing (BSDH) method based on 2D image features which utilizes bilinear projections to binarize the image matrix features such that the intrinsic characteristics in the 2D image space are preserved in the learned binary codes. Meanwhile, the bilinear projection approximation and vectorization binary codes regression are seamlessly integrated together to formulate the final robust learning framework. Furthermore, a discrete optimization strategy is developed to alternatively update each variable for obtaining the high-quality binary codes. In addition, two 2D image features, traditional SURF-based FVLAD feature and CNN-based AlexConv5 feature are designed for further improving the performance of the proposed BSDH method. Results of extensive experiments conducted on four benchmark datasets show that the proposed BSDH method almost outperforms all competing hashing methods with different input features by different evaluation protocols.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا