Do you want to publish a course? Click here

Seasonal association between viral causes of hospitalised acute lower respiratory infections and meteorological factors in China: a retrospective study

83   0   0.0 ( 0 )
 Added by Bing Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Acute lower respiratory infections caused by respiratory viruses are common and persistent infectious diseases worldwide and in China, which have pronounced seasonal patterns. Meteorological factors have important roles in the seasonality of some major viruses. Our aim was to identify the dominant meteorological factors and to model their effects on common respiratory viruses in different regions of China. We analysed monthly virus data on patients from 81 sentinel hospitals in 22 provinces in mainland China from 2009 to 2013. The geographical detector method was used to quantify the explanatory power of each meteorological factor, individually and interacting in pairs. 28369 hospitalised patients with ALRI were tested, 10387 were positive for at least one virus, including RSV, influenza virus, PIV, ADV, hBoV, hCoV and hMPV. RSV and influenza virus had annual peaks in the north and biannual peaks in the south. PIV and hBoV had higher positive rates in the spring summer months. hMPV had an annual peak in winter spring, especially in the north. ADV and hCoV exhibited no clear annual seasonality. Temperature, atmospheric pressure, vapour pressure, and rainfall had most explanatory power on most respiratory viruses in each region. Relative humidity was only dominant in the north, but had no significant explanatory power for most viruses in the south. Hours of sunlight had significant explanatory power for RSV and influenza virus in the north, and for most viruses in the south. Wind speed was the only factor with significant explanatory power for human coronavirus in the south. For all viruses, interactions between any two of the paired factors resulted in enhanced explanatory power, either bivariately or non-linearly.



rate research

Read More

Under the hypothesis that both influenza and respiratory syncytial virus (RSV) are the two leading causes of acute respiratory infections (ARI), in this paper we have used a standard two-pathogen epidemic model as a regressor to explain, on a yearly basis, high season ARI data in terms of the contact rates and initial conditions of the mathematical model. The rationale is that ARI high season is a transient regime of a noisy system, e.g., the system is driven away from equilibrium every year by fluctuations in variables such as humidity, temperature, viral mutations and human behavior. Using the value of the replacement number as a phenotypic trait associated to fitness, we provide evidence that influenza and RSV coexists throughout the ARI high season through superinfection.
Viral kinetics have been extensively studied in the past through the use of spatially homogeneous ordinary differential equations describing the time evolution of the diseased state. However, spatial characteristics such as localized populations of dead cells might adversely affect the spread of infection, similar to the manner in which a counter-fire can stop a forest fire from spreading. In order to investigate the influence of spatial heterogeneities on viral spread, a simple 2-D cellular automaton (CA) model of a viral infection has been developed. In this initial phase of the investigation, the CA model is validated against clinical immunological data for uncomplicated influenza A infections. Our results will be shown and discussed.
Existing methods for diagnosing predictability in climate indices often make a number of unjustified assumptions about the climate system that can lead to misleading conclusions. We present a flexible family of state-space models capable of separating the effects of external forcing on inter-annual time scales, from long-term trends and decadal variability, short term weather noise, observational errors and changes in autocorrelation. Standard potential predictability models only estimate the fraction of the total variance in the index attributable to external forcing. In addition, our methodology allows us to partition individual seasonal means into forced, slow, fast and error components. Changes in the predictable signal within the season can also be estimated. The model can also be used in forecast mode to assess both intra- and inter-seasonal predictability. We apply the proposed methodology to a North Atlantic Oscillation index for the years 1948-2017. Around 60% of the inter-annual variance in the December-January-February mean North Atlantic Oscillation is attributable to external forcing, and 8% to trends on longer time-scales. In some years, the external forcing remains relatively constant throughout the winter season, in others it changes during the season. Skillful statistical forecasts of the December-January-February mean North Atlantic Oscillation are possible from the end of November onward and predictability extends into March. Statistical forecasts of the December-January-February mean achieve a correlation with the observations of 0.48.
Inflow forecasts play an essential role in the management of hydropower reservoirs. Forecasts help operators schedule power generation in advance to maximise economic value, mitigate downstream flood risk, and meet environmental requirements. The horizon of operational inflow forecasts is often limited in range to ~2 weeks ahead, marking the predictability barrier of deterministic weather forecasts. Reliable inflow forecasts in the sub-seasonal to seasonal (S2S) range would allow operators to take proactive action to mitigate risks of adverse weather conditions, thereby improving water management and increasing revenue. This study outlines a method of deriving skilful S2S inflow forecasts using a case study reservoir in the Scottish Highlands. We generate ensemble inflow forecasts by training a linear regression model for the observed inflow onto S2S ensemble precipitation predictions from the European Centre for Medium-range Weather Forecasting (ECMWF). Subsequently, post-processing techniques from Ensemble Model Output Statistics are applied to derive calibrated S2S probabilistic inflow forecasts, without the application of a separate hydrological model. We find the S2S probabilistic inflow forecasts hold skill relative to climatological forecasts up to 6 weeks ahead. The inflow forecasts hold greater skill during winter compared with summer. The forecasts, however, struggle to predict high summer inflows, even at short lead-times. The potential for the S2S probabilistic inflow forecasts to improve water management and deliver increased economic value is confirmed using a stylised cost model. While applied to hydropower forecasting, the results and methods presented here are relevant to broader fields of water management and S2S forecasting applications.
We present a new statistical modelling approach where the response is a function of high frequency count data. Our application is about investigating the relationship between the health outcome fat mass and physical activity (PA) measured by accelerometer. The accelerometer quantifies the intensity of physical activity as counts per epoch over a given period of time. We use data from the Avon longitudinal study of parents and children (ALSPAC) where accelerometer data is available as a time series of accelerometer counts per minute over seven days for a subset of children. In order to compare accelerometer profiles between individuals and to reduce the high dimension a functional summary of the profiles is used. We use the histogram as a functional summary due to its simplicity, suitability and ease of interpretation. Our model is an extension of generalised regression of scalars on functions or signal regression. It allows also multi-dimensional functional predictors and additive non-linear predictors for metric covariates. The additive multidimensional functional predictors allow investigating specific questions about whether the effect of PA varies over its intensity, by gender, by time of day or by day of the week. The key feature of the model is that it utilises the full profile of measured PA without requiring cut-points defining intensity levels for light, moderate and vigorous activity. We show that the (not necessarily causal) effect of PA is not linear and not constant over the activity intensity. Also, there is little evidence to suggest that the effect of PA intensity varies by gender or whether it happens on weekdays or on weekends.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا