No Arabic abstract
Existing methods for diagnosing predictability in climate indices often make a number of unjustified assumptions about the climate system that can lead to misleading conclusions. We present a flexible family of state-space models capable of separating the effects of external forcing on inter-annual time scales, from long-term trends and decadal variability, short term weather noise, observational errors and changes in autocorrelation. Standard potential predictability models only estimate the fraction of the total variance in the index attributable to external forcing. In addition, our methodology allows us to partition individual seasonal means into forced, slow, fast and error components. Changes in the predictable signal within the season can also be estimated. The model can also be used in forecast mode to assess both intra- and inter-seasonal predictability. We apply the proposed methodology to a North Atlantic Oscillation index for the years 1948-2017. Around 60% of the inter-annual variance in the December-January-February mean North Atlantic Oscillation is attributable to external forcing, and 8% to trends on longer time-scales. In some years, the external forcing remains relatively constant throughout the winter season, in others it changes during the season. Skillful statistical forecasts of the December-January-February mean North Atlantic Oscillation are possible from the end of November onward and predictability extends into March. Statistical forecasts of the December-January-February mean achieve a correlation with the observations of 0.48.
Inflow forecasts play an essential role in the management of hydropower reservoirs. Forecasts help operators schedule power generation in advance to maximise economic value, mitigate downstream flood risk, and meet environmental requirements. The horizon of operational inflow forecasts is often limited in range to ~2 weeks ahead, marking the predictability barrier of deterministic weather forecasts. Reliable inflow forecasts in the sub-seasonal to seasonal (S2S) range would allow operators to take proactive action to mitigate risks of adverse weather conditions, thereby improving water management and increasing revenue. This study outlines a method of deriving skilful S2S inflow forecasts using a case study reservoir in the Scottish Highlands. We generate ensemble inflow forecasts by training a linear regression model for the observed inflow onto S2S ensemble precipitation predictions from the European Centre for Medium-range Weather Forecasting (ECMWF). Subsequently, post-processing techniques from Ensemble Model Output Statistics are applied to derive calibrated S2S probabilistic inflow forecasts, without the application of a separate hydrological model. We find the S2S probabilistic inflow forecasts hold skill relative to climatological forecasts up to 6 weeks ahead. The inflow forecasts hold greater skill during winter compared with summer. The forecasts, however, struggle to predict high summer inflows, even at short lead-times. The potential for the S2S probabilistic inflow forecasts to improve water management and deliver increased economic value is confirmed using a stylised cost model. While applied to hydropower forecasting, the results and methods presented here are relevant to broader fields of water management and S2S forecasting applications.
Temporary changes in precipitation may lead to sustained and severe drought or massive floods in different parts of the world. Knowing variation in precipitation can effectively help the water resources decision-makers in water resources management. Large-scale circulation drivers have a considerable impact on precipitation in different parts of the world. In this research, the impact of El Ni~no-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO) on seasonal precipitation over Iran was investigated. For this purpose, 103 synoptic stations with at least 30 years of data were utilized. The Spearman correlation coefficient between the indices in the previous 12 months with seasonal precipitation was calculated, and the meaningful correlations were extracted. Then the month in which each of these indices has the highest correlation with seasonal precipitation was determined. Finally, the overall amount of increase or decrease in seasonal precipitation due to each of these indices was calculated. Results indicate the Southern Oscillation Index (SOI), NAO, and PDO have the most impact on seasonal precipitation, respectively. Also, these indices have the highest impact on the precipitation in winter, autumn, spring, and summer, respectively. SOI has a diverse impact on winter precipitation compared to the PDO and NAO, while in the other seasons, each index has its special impact on seasonal precipitation. Generally, all indices in different phases may decrease the seasonal precipitation up to 100%. However, the seasonal precipitation may increase more than 100% in different seasons due to the impact of these indices. The results of this study can be used effectively in water resources management and especially in dam operation.
We suggest a way of rationalizing an intra-seasonal oscillations (IOs) of the Earth atmospheric flow as four meteorological relevant triads of interacting planetary waves, isolated from the system of all the rest planetary waves. Our model is independent of the topography (mountains, etc.) and gives a natural explanation of IOs both in the North and South Hemispheres. Spherical planetary waves are an example of a wave mesoscopic system obeying discrete resonances that also appears in other areas of physics.
Seasonal time series Forecasting remains a challenging problem due to the long-term dependency from seasonality. In this paper, we propose a two-stage framework to forecast univariate seasonal time series. The first stage explicitly learns the long-range time series structure in a time window beyond the forecast horizon. By incorporating the learned long-range structure, the second stage can enhance the prediction accuracy in the forecast horizon. In both stages, we integrate the auto-regressive model with neural networks to capture both linear and non-linear characteristics in time series. Our framework achieves state-of-the-art performance on M4 Competition Hourly datasets. In particular, we show that incorporating the intermediate results generated in the first stage to existing forecast models can effectively enhance their prediction performance.
The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds. Different efforts have been made, with compartmental models in epidemiology and statistical models such as AutoRegressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS) or computing intelligence models. These efforts have proved useful in some instances by allowing decision makers to distinguish different scenarios during the emergency, but their accuracy has been disappointing, forecasts ignore uncertainties and less attention is given to local areas. In this study, we propose a simple Multiple Linear Regression model, optimised to use call data to forecast the number of daily confirmed cases. Moreover, we produce a probabilistic forecast that allows decision makers to better deal with risk. Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures. The simplicity, interpretability and reliability of the model, obtained in a careful forecasting exercise, is a meaningful contribution to decision makers at local level who acutely need to organise resources in already strained health services. We hope that this model would serve as a building block of other forecasting efforts that on the one hand would help front-line personal and decision makers at local level, and on the other would facilitate the communication with other modelling efforts being made at the national level to improve the way we tackle this pandemic and other similar future challenges.