Do you want to publish a course? Click here

Anisotropic local constant smoothing for change-point regression function estimation

179   0   0.0 ( 0 )
 Added by John R.J. Thompson
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Understanding forest fire spread in any region of Canada is critical to promoting forest health, and protecting human life and infrastructure. Quantifying fire spread from noisy images, where regions of a fire are separated by change-point boundaries, is critical to faithfully estimating fire spread rates. In this research, we develop a statistically consistent smooth estimator that allows us to denoise fire spread imagery from micro-fire experiments. We develop an anisotropic smoothing method for change-point data that uses estimates of the underlying data generating process to inform smoothing. We show that the anisotropic local constant regression estimator is consistent with convergence rate $Oleft(n^{-1/{(q+2)}}right)$. We demonstrate its effectiveness on simulated one- and two-dimensional change-point data and fire spread imagery from micro-fire experiments.



rate research

Read More

Without imposing prior distributional knowledge underlying multivariate time series of interest, we propose a nonparametric change-point detection approach to estimate the number of change points and their locations along the temporal axis. We develop a structural subsampling procedure such that the observations are encoded into multiple sequences of Bernoulli variables. A maximum likelihood approach in conjunction with a newly developed searching algorithm is implemented to detect change points on each Bernoulli process separately. Then, aggregation statistics are proposed to collectively synthesize change-point results from all individual univariate time series into consistent and stable location estimations. We also study a weighting strategy to measure the degree of relevance for different subsampled groups. Simulation studies are conducted and shown that the proposed change-point methodology for multivariate time series has favorable performance comparing with currently popular nonparametric methods under various settings with different degrees of complexity. Real data analyses are finally performed on categorical, ordinal, and continuous time series taken from fields of genetics, climate, and finance.
The variance of noise plays an important role in many change-point detection procedures and the associated inferences. Most commonly used variance estimators require strong assumptions on the true mean structure or normality of the error distribution, which may not hold in applications. More importantly, the qualities of these estimators have not been discussed systematically in the literature. In this paper, we introduce a framework of equivariant variance estimation for multiple change-point models. In particular, we characterize the set of all equivariant unbiased quadratic variance estimators for a family of change-point model classes, and develop a minimax theory for such estimators.
87 - Ben Boukai , Yue Zhang 2018
We consider a resampling scheme for parameters estimates in nonlinear regression models. We provide an estimation procedure which recycles, via random weighting, the relevant parameters estimates to construct consistent estimates of the sampling distribution of the various estimates. We establish the asymptotic normality of the resampled estimates and demonstrate the applicability of the recycling approach in a small simulation study and via example.
In this paper, we consider a high-dimensional quantile regression model where the sparsity structure may differ between two sub-populations. We develop $ell_1$-penalized estimators of both regression coefficients and the threshold parameter. Our penalized estimators not only select covariates but also discriminate between a model with homogeneous sparsity and a model with a change point. As a result, it is not necessary to know or pretest whether the change point is present, or where it occurs. Our estimator of the change point achieves an oracle property in the sense that its asymptotic distribution is the same as if the unknown active sets of regression coefficients were known. Importantly, we establish this oracle property without a perfect covariate selection, thereby avoiding the need for the minimum level condition on the signals of active covariates. Dealing with high-dimensional quantile regression with an unknown change point calls for a new proof technique since the quantile loss function is non-smooth and furthermore the corresponding objective function is non-convex with respect to the change point. The technique developed in this paper is applicable to a general M-estimation framework with a change point, which may be of independent interest. The proposed methods are then illustrated via Monte Carlo experiments and an application to tipping in the dynamics of racial segregation.
103 - Kean Ming Tan , Lan Wang , 2021
$ell_1$-penalized quantile regression is widely used for analyzing high-dimensional data with heterogeneity. It is now recognized that the $ell_1$-penalty introduces non-negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized $M$-estimation with strongly convex loss functions have been well studied, the extant literature on quantile regression is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non-smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution-type smoothed quantile regression with iteratively reweighted $ell_1$-regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted $ell_1$-penalized smoothed quantile regression estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا