Do you want to publish a course? Click here

Entanglement Negativity at Measurement-Induced Criticality

102   0   0.0 ( 0 )
 Added by Shengqi Sang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose entanglement negativity as a fine-grained probe of measurement-induced criticality. We motivate this proposal in stabilizer states, where for two disjoint subregions, comparing their mutual negativity and their mutual information leads to a precise distinction between bipartite and multipartite entanglement. In a measurement-only stabilizer circuit that maps exactly to two-dimensional critical percolation, we show that the mutual information and the mutual negativity are governed by boundary conformal fields of different scaling dimensions at long distances. We then consider a class of hybrid circuit models obtained by perturbing the measurement-only circuit with unitary gates of progressive levels of complexity. While other critical exponents vary appreciably for different choices of unitary gate ensembles at their respective critical points, the mutual negativity has scaling dimension 3 across remarkably many of the hybrid circuits, which is notably different from that in percolation. We contrast our results with limiting cases where a geometrical minimal-cut picture is available.



rate research

Read More

142 - Bowen Shi , Xin Dai , Yuan-Ming Lu 2020
We study the entanglement behavior of a random unitary circuit punctuated by projective measurements at the measurement-driven phase transition in one spatial dimension. We numerically study the logarithmic entanglement negativity of two disjoint intervals and find that it scales as a power of the cross-ratio. We investigate two systems: (1) Clifford circuits with projective measurements, and (2) Haar random local unitary circuit with projective measurements. Remarkably, we identify a power-law behavior of entanglement negativity at the critical point. Previous results of entanglement entropy and mutual information point to an emergent conformal invariance of the measurement-driven transition. Our result suggests that the critical behavior of the measurement-driven transition is distinct from the ground state behavior of any emph{unitary} conformal field theory.
We uncover a local order parameter for measurement-induced phase transitions: the average entropy of a single reference qubit initially entangled with the system. Using this order parameter, we identify scalable probes of measurement-induced criticality (MIC) that are immediately applicable to advanced quantum computing platforms. We test our proposal on a 1+1 dimensional stabilizer circuit model that can be classically simulated in polynomial time. We introduce the concept of a decoding light cone to establish the local and efficiently measurable nature of this probe. We also estimate bulk and surface critical exponents for the transition. Developing scalable probes of MIC in more general models may be a useful application of noisy-intermediate scale quantum (NISQ) devices, as well as point to more efficient realizations of fault-tolerant quantum computation.
We numerically investigate the structure of many-body wave functions of 1D random quantum circuits with local measurements employing the participation entropies. The leading term in system size dependence of participation entropies indicates a multifractal scaling of the wave-functions at any non-zero measurement rate. The sub-leading term contains universal information about measurement--induced phase transitions and plays the role of an order parameter, being non-zero in the error-correcting phase and vanishing in the quantum Zeno phase. We provide an analytical interpretation of this behavior expressing the participation entropy in terms of partition functions of classical statistical models in 2D.
Models for non-unitary quantum dynamics, such as quantum circuits that include projective measurements, have been shown to exhibit rich quantum critical behavior. There are many complementary perspectives on this behavior. For example, there is a known correspondence between d-dimensional local non-unitary quantum circuits and tensor networks on a D=(d+1)-dimensional lattice. Here, we show that in the case of systems of non-interacting fermions, there is furthermore a full correspondence between non-unitary circuits in d spatial dimensions and unitary non-interacting fermion problems with static Hermitian Hamiltonians in D=(d+1) spatial dimensions. This provides a powerful new perspective for understanding entanglement phases and critical behavior exhibited by non-interacting circuits. Classifying the symmetries of the corresponding non-interacting Hamiltonian, we show that a large class of random circuits, including the most generic circuits with randomness in space and time, are in correspondence with Hamiltonians with static spatial disorder in the ten Altland-Zirnbauer symmetry classes. We find the criticality that is known to occur in all of these classes to be the origin of the critical entanglement properties of the corresponding random non-unitary circuit. To exemplify this, we numerically study the quantum states at the boundary of Haar-random Gaussian fermionic tensor networks of dimension D=2 and D=3. We show that the most general such tensor network ensemble corresponds to a unitary problem of non-interacting fermions with static disorder in Altland-Zirnbauer symmetry class DIII, which for both D=2 and D=3 is known to exhibit a stable critical metallic phase. Tensor networks and corresponding random non-unitary circuits in the other nine Altland-Zirnbauer symmetry classes can be obtained from the DIII case by implementing Clifford algebra extensions for classifying spaces.
We study the finite-temperature superfluid transition in a modified two-dimensional (2D) XY model with power-law distributed scratch-like bond disorder. As its exponent decreases, the disorder grows stronger and the mechanism driving the superfluid transition changes from conventional vortex-pair unbinding to a strong randomness criticality (termed scratched-XY criticality) characterized by a non-universal jump of the superfluid stiffness. The existence of the scratched-XY criticality at finite temperature and its description by an asymptotically exact semi-renormalization group theory, previously developed for the superfluid-insulator transition in one-dimensional disordered quantum systems, is numerically proven by designing a model with minimal finite size effects. Possible experimental implementations are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا