Do you want to publish a course? Click here

On the Swampland Cobordism Conjecture and Non-Abelian Duality Groups

290   0   0.0 ( 0 )
 Added by Markus Dierigl
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the cobordism conjecture of McNamara and Vafa which asserts that the bordism group of quantum gravity is trivial. In the context of type IIB string theory compactified on a circle, this predicts the presence of D7-branes. On the other hand, the non-Abelian structure of the IIB duality group $SL(2,mathbb{Z})$ implies the existence of additional $[p,q]$ 7-branes. We find that this additional information is instead captured by the space of closed paths on the moduli space of elliptic curves parameterizing distinct values of the type IIB axio-dilaton. This description allows to recover the full structure of non-Abelian braid statistics for 7-branes. Combining the cobordism conjecture with an earlier Swampland conjecture by Ooguri and Vafa, we argue that only certain congruence subgroups $Gamma subset SL(2,mathbb{Z})$ specifying genus zero modular curves can appear in 8D F-theory vacua. This leads to a successful prediction for the allowed Mordell-Weil torsion groups for 8D F-theory vacua.



rate research

Read More

107 - William H. Kinney 2021
I conjecture an upper bound on the number of possible swampland conjectures by comparing the entropy required by the conjectures themselves to the Beckenstein-Hawking entropy of the cosmological horizon. Assuming of order 100 kilobits of entropy per conjecture, this places an upper bound of order $10^{117}$ on the number of conjectures. I estimate the rate of production of swampland conjectures by the number of papers listed on INSPIRE with the word swampland in the title or abstract, which has been showing approximately exponential growth since 2014. At the current rate of growth, the entropy bound on the number of swampland conjectures can be projected to be saturated on a timescale of order $10^{-8} H_0^{-1}$. I compare the upper bound from the Swampland Conjecture Bound Conjecture (SCBC) to the estimated number of vacua in the string landscape. Employing the duality suggested by AdS/CFT between the quantum complexity of a holographic state and the volume of a Wheeler-Dewitt spacetime patch, I place a conservative lower bound of order $mathcal{N}_H > 10^{263}$ on the number of Hubble volumes in the multiverse which must be driven to heat death to fully explore the string landscape via conjectural methods.
We extend the swampland from effective field theories (EFTs) inconsistent with quantum gravity to EFTs inconsistent with quantum supergravity. This enlarges the swampland to include EFTs that become inconsistent when the gravitino is quantized. We propose the Gravitino Swampland Conjecture: the gravitino sound speed must be non-vanishing in all EFTs that are low energy limits of quantum supergravity. This seemingly simple statement has important consequences for both theories and observations. The conjecture is consistent with and supported by the KKLT and LVS scenarios for moduli stabilization in string theory.
We consider effective theories with massive fields that have spins larger than or equal to two. We conjecture a universal cutoff scale on any such theory that depends on the lightest mass of such fields. This cutoff corresponds to the mass scale of an infinite tower of states, signalling the breakdown of the effective theory. The cutoff can be understood as the Weak Gravity Conjecture applied to the Stuckelberg gauge field in the mass term of the high spin fields. A strong version of our conjecture applies even if the graviton itself is massive, so to massive gravity. We provide further evidence for the conjecture from string theory.
McNamara and Vafa conjectured that any pair of consistent quantum gravity theories can be connected by a domain wall. We test the conjecture in the context of the AdS/CFT correspondence. There are topological constraints on existence of an interface between the corresponding conformal field theories. We discuss how to construct domain walls in AdS predicted by the conjecture when the corresponding conformal interfaces are prohibited by topological obstructions.
We consider consequences of triviality of cobordism classes and anomaly cancellation in supergravity theories in $d>6$. We argue that this leads to the existence of certain defects which we call I-folds (a generalization of orientifolds). The requirement that compactifications to lower dimensions involving these defects be anomaly free leads to conditions on the higher dimensional theory. We show that in theories with 16 supercharges in $d>6$ this leads to restrictions on the rank of the allowed gauge groups and thus provides an explanation for the observed restrictions in known string theory constructions. In particular, in eight and nine dimensions the only solutions to our constraints are precisely the ones realized in string theory compactifications. We also use these techniques to place constraints on the global structure of the gauge group in eight and nine dimensions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا