McNamara and Vafa conjectured that any pair of consistent quantum gravity theories can be connected by a domain wall. We test the conjecture in the context of the AdS/CFT correspondence. There are topological constraints on existence of an interface between the corresponding conformal field theories. We discuss how to construct domain walls in AdS predicted by the conjecture when the corresponding conformal interfaces are prohibited by topological obstructions.
We study finite temperature correlation functions and quasinormal modes in a strongly coupled conformal field theory holographically dual to a small black hole in global Anti-de Sitter spacetime. Upon variation of the black hole radius, our results smoothly interpolate between known limits corresponding to large black holes and thermal AdS space. This implies that the quantities are continuous functions of energy density in the microcanonical ensemble, thus smoothly connecting the deconfined and confined phases that are separated by a first order phase transition in the canonical description.
Recently Herzog has shown that deconfinement of AdS/QCD can be realized, in the hard-wall model where the small radius region is removed in the asymptotically AdS space, via a first order Hawking-Page phase transition between a low temperature phase given by a pure AdS geometry and a high temperature phase given by the AdS black hole in Poincare coordinates. In this paper we first extend Herzogs work to the hard wall AdS/QCD model in curved spaces by studying the thermodynamics of AdS black holes with spherical or negative constant curvature horizon, dual to a non-supersymmetric Yang-Mills theory on a sphere or hyperboloid respectively. For the spherical horizon case, we find that the temperature of the phase transition increases by introducing an infrared cutoff, compared to the case without the cutoff; For the hyperbolic horizon case, there is a gap for the infrared cutoff, below which the Hawking-Page phase transition does not occur. We also discuss charged AdS black holes in the grand canonical ensemble, corresponding to a Yang-Mills theory at finite chemical potential, and find that there is always a gap for the infrared cutoff due to the existence of a minimal horizon for the charged AdS black holes with any horizon topology.
The evolution of black holes in confining boxes is interesting for a number of reasons, particularly because it mimics the global structure of Anti-de Sitter geometries. These are non-globally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data is supplemented by boundary conditions at the time-like conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirror-like boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is only observed in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both the Newman-Penrose scalars Psi_4 and Psi_0 are non-trivial in our setup, and we show that the numerical data verifies the expected relations between them.
We consider consequences of triviality of cobordism classes and anomaly cancellation in supergravity theories in $d>6$. We argue that this leads to the existence of certain defects which we call I-folds (a generalization of orientifolds). The requirement that compactifications to lower dimensions involving these defects be anomaly free leads to conditions on the higher dimensional theory. We show that in theories with 16 supercharges in $d>6$ this leads to restrictions on the rank of the allowed gauge groups and thus provides an explanation for the observed restrictions in known string theory constructions. In particular, in eight and nine dimensions the only solutions to our constraints are precisely the ones realized in string theory compactifications. We also use these techniques to place constraints on the global structure of the gauge group in eight and nine dimensions.
In theories with discrete Abelian gauge groups, requiring that black holes be able to lose their charge as they evaporate leads to an upper bound on the product of a charged particles mass and the cutoff scale above which the effective description of the theory breaks down. This suggests that a non-trivial version of the Weak Gravity Conjecture (WGC) may also apply to gauge symmetries that are discrete, despite there being no associated massless field, therefore pushing the conjecture beyond the slogan that `gravity is the weakest force. Here, we take a step towards making this expectation more precise by studying $mathbb{Z}_N$ and $mathbb{Z}_2^N$ gauge symmetries realised via theories of spontaneous symmetry breaking. We show that applying the WGC to a dual description of an Abelian Higgs model leads to constraints that allow us to saturate but not violate existing bounds on discrete symmetries based on black hole arguments. In this setting, considering the effect of discrete hair on black holes naturally identifies the cutoff of the effective theory with the scale of spontaneous symmetry breaking, and provides a mechanism through which discrete hair can be lost without modifying the gravitational sector. We explore the possible implications of these arguments for understanding the smallness of the weak scale compared to $M_{Pl}$.