Do you want to publish a course? Click here

Electron Beam Chirp Dexterity in Staging Laser Wakefield Acceleration

65   0   0.0 ( 0 )
 Added by Naveen Pathak
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Particle energy chirp is shown to be a useful instrument in the staging laser wake field acceleration directed to generation of high-quality dense electron beams. The chirp is a necessary tool to compensate non-uniformity of acceleration field in longitudinal direction and achieve essential reduction of energy dispersion. This is demonstrated via particle-in-cell simulations exploiting the splitting technique for plasma and beam electrons. Properly chosen beam chirps allow decrease in the energy dispersion of order of magnitude in every single stage during acceleration to the GeV energy range.



rate research

Read More

One of the most robust methods, demonstrated up to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. These channels, i.e., plasma columns with a minimum density along the laser pulse propagation axis, may optically guide short laser pulses, thereby increasing the acceleration length, leading to a more efficient electron acceleration. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes taking place in order to get a detailed understanding and improve the operation. However, the discharge plasma, being one of the most crucial components of the laser-plasma accelerator, is not simulated with the accuracy and resolution required to advance this promising technology. In the present work, such simulations are performed using the code MARPLE. First, the process of the capillary filling with a cold hydrogen before the discharge is fired, through the side supply channels is simulated. The main goal of this simulation is to get a spatial distribution of the filling gas in the region near the open ends of the capillary. A realistic geometry is used for this and the next stage simulations, including the insulators, the supplying channels as well as the electrodes. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate effectiveness of the beam coupling with the channeling plasma wave guide and electron acceleration, modeling of laser-plasma interaction was performed with the code INF&RNO
In this proceeding, we show that when the drive laser pulse overlaps the trapped electrons in a laser wakefield accelerator (LWFA), those electrons can gain energy from direct laser acceleration (DLA) over extended distances despite the evolution of both the laser and the wake. Through simulations, the evolution of the properties of both the laser and the electron beam is quantified, and then the resonance condition for DLA is examined in the context of this change. We find that although the electrons produced from the LWFA cannot continuously satisfy the DLA resonance condition, they nevertheless can gain a significant amount of energy from DLA.
It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.
199 - W. Lu , M. Tzoufras , 2006
The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for Laser WakeField Acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample Particle-In-Cell (PIC) simulation of a 30f sec, 200T W laser interacting with a 0.75cm long plasma with density 1.5*10^18 cm^-3 to produce an ultra-short (10f s) mono-energetic bunch of self-injected electrons at 1.5 GeV with 0.3nC of charge. For future higher-energy accelerator applications we propose a parameter space, that is distinct from that described by Gordienko and Pukhov [Physics of Plasmas 12, 043109 (2005)] in that it involves lower densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.
High-flux polarized particle beams are of critical importance for the investigation of spin-dependent processes, such as in searches of physics beyond the Standard Model, as well as for scrutinizing the structure of solids and surfaces in material science. Here we demonstrate that kiloampere polarized electron beams can be produced via laser-wakefield acceleration from a gas target. A simple theoretical model for determining the electron beam polarization is presented and supported with self-consistent three-dimensional particle-in-cell simulations that incorporate the spin dynamics. By appropriately choosing the laser and gas parameters, we show that the depolarization of electrons induced by the laser-wakefield-acceleration process can be as low as 10%. Compared to currently available sources of polarized electron beams, the flux is increased by four orders of magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا