Do you want to publish a course? Click here

Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications

255   0   0.0 ( 0 )
 Added by Stepan Bulanov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the most robust methods, demonstrated up to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. These channels, i.e., plasma columns with a minimum density along the laser pulse propagation axis, may optically guide short laser pulses, thereby increasing the acceleration length, leading to a more efficient electron acceleration. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes taking place in order to get a detailed understanding and improve the operation. However, the discharge plasma, being one of the most crucial components of the laser-plasma accelerator, is not simulated with the accuracy and resolution required to advance this promising technology. In the present work, such simulations are performed using the code MARPLE. First, the process of the capillary filling with a cold hydrogen before the discharge is fired, through the side supply channels is simulated. The main goal of this simulation is to get a spatial distribution of the filling gas in the region near the open ends of the capillary. A realistic geometry is used for this and the next stage simulations, including the insulators, the supplying channels as well as the electrodes. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate effectiveness of the beam coupling with the channeling plasma wave guide and electron acceleration, modeling of laser-plasma interaction was performed with the code INF&RNO



rate research

Read More

A method of creating plasma channels with controllable depth and transverse profile for the guiding of short, high power laser pulses for efficient electron acceleration is proposed. The plasma channel produced by the hydrogen-filled capillary discharge waveguide is modified by a ns-scale laser pulse, which heats the electrons near the capillary axis. This interaction creates a deeper plasma channel within the capillary discharge that evolves on a ns-time scale, allowing laser beams with smaller spot sizes than would otherwise be possible in the unmodified capillary discharge.
Particle energy chirp is shown to be a useful instrument in the staging laser wake field acceleration directed to generation of high-quality dense electron beams. The chirp is a necessary tool to compensate non-uniformity of acceleration field in longitudinal direction and achieve essential reduction of energy dispersion. This is demonstrated via particle-in-cell simulations exploiting the splitting technique for plasma and beam electrons. Properly chosen beam chirps allow decrease in the energy dispersion of order of magnitude in every single stage during acceleration to the GeV energy range.
119 - J. Luo , M. Chen , W. Y. Wu 2017
Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. A curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. With moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.
77 - N. Pathak , A. Zhidkov , Y. Sakai 2019
The multi-stage technique for laser driven acceleration of electrons become a critical part of full-optical, jitter-free accelerators. Use of several independent laser drivers and shorter length plasma targets allows the stable and reproducible acceleration of electron bunches (or beam) in the GeV energies with lower energy spreads. At the same time the charge coupling, necessary for efficient acceleration in the consecutive acceleration stage(s), depends collectively on the parameters of the injected electron beam, the booster stage, and the non-linear transverse dynamics of the electron beam in the laser pulse wake. An unmatched electron beam injected in the booster stage(s), and its non-linear transverse evolution may result in perturbation and even reduction of the field strength in the acceleration phase of the wakefield. Analysis and characterization of charge coupling in multi-stage laser wakefield acceleration (LWFA) become ultimately important. Here, we investigate two-stage LWFA via fully relativistic multi-dimensional particle-in-cell simulations, and underlying the most critical parameters, which affect the efficient coupling and acceleration of the electron beam in the booster stage.
In this proceeding, we show that when the drive laser pulse overlaps the trapped electrons in a laser wakefield accelerator (LWFA), those electrons can gain energy from direct laser acceleration (DLA) over extended distances despite the evolution of both the laser and the wake. Through simulations, the evolution of the properties of both the laser and the electron beam is quantified, and then the resonance condition for DLA is examined in the context of this change. We find that although the electrons produced from the LWFA cannot continuously satisfy the DLA resonance condition, they nevertheless can gain a significant amount of energy from DLA.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا