No Arabic abstract
We present the results from the first two years of the Planet Hunters TESS citizen science project, which identifies planet candidates in the TESS data by engaging members of the general public. Over 22,000 citizen scientists from around the world visually inspected the first 26 Sectors of TESS data in order to help identify transit-like signals. We use a clustering algorithm to combine these classifications into a ranked list of events for each sector, the top 500 of which are then visually vetted by the science team. We assess the detection efficiency of this methodology by comparing our results to the list of TESS Objects of Interest (TOIs) and show that we recover 85 % of the TOIs with radii greater than 4 Earth radii and 51 % of those with radii between 3 and 4 Earth radii. Additionally, we present our 90 most promising planet candidates that had not previously been identified by other teams, 73 of which exhibit only a single transit event in the TESS light curve, and outline our efforts to follow these candidates up using ground-based observatories. Finally, we present noteworthy stellar systems that were identified through the Planet Hunters TESS project.
The Transiting Exoplanet Survey Satellite (TESS) is the first high-precision full-sky photometry survey in space. We present light curves from a magnitude limited set of stars and other stationary luminous objects from the TESS Full Frame Images, as reduced by the MIT Quick Look Pipeline (QLP). Our light curves cover the full two-year TESS Primary Mission and include $sim$ 14,770,000 and $sim$ 9,600,000 individual light curve segments in the Southern and Northern ecliptic hemispheres, respectively. We describe the photometry and detrending techniques we used to create the light curves, and compare the noise properties with theoretical expectations. All of the QLP light curves are available at MAST as a High Level Science Product via doi.org/10.17909/t9-r086-e880 (https://archive.stsci.edu/hlsp/qlp). This is the largest collection of TESS photometry available to the public to date.
We present $Spitzer$ 4.5$mu$m observations of the transit of TOI-700 d, a habitable zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325-6534456). TOI-700 d has a radius of $1.144^{+0.062}_{-0.061}R_oplus$ and orbits within its host stars conservative habitable zone with a period of 37.42 days ($T_mathrm{eq} sim 269$K). TOI-700 also hosts two small inner planets (R$_b$=$1.037^{+0.065}_{-0.064}R_oplus$ & R$_c$=$2.65^{+0.16}_{-0.15}R_oplus$) with periods of 9.98 and 16.05 days, respectively. Our $Spitzer$ observations confirm the TESS detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the $Spitzer$ light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity instruments (expected RV semi-amplitude of $sim$70 cm/s).
We report the first discovery of a thick-disk planet, LHS 1815b (TOI-704b, TIC 260004324), detected in the TESS survey. LHS 1815b transits a bright (V = 12.19 mag, K = 7.99 mag) and quiet M dwarf located $ 29.87pm0.02 pc$ away with a mass of $0.502pm0.015 M_{odot}$ and a radius of $0.501pm0.030 R_{odot}$. We validate the planet by combining space and ground-based photometry, spectroscopy, and imaging. The planet has a radius of $1.088pm 0.064 R_{oplus}$ with a $3 sigma$ mass upper-limit of $8.7 M_{oplus}$. We analyze the galactic kinematics and orbit of the host star LHS1815 and find that it has a large probability ($P_{thick}/P_{thin} = 6482$) to be in the thick disk with a much higher expected maximal height ($Z_{max} = 1.8 kpc$) above the Galactic plane compared with other TESS planet host stars. Future studies of the interior structure and atmospheric properties of planets in such systems using for example the upcoming James Webb Space Telescope (JWST), can investigate the differences in formation efficiency and evolution for planetary systems between different Galactic components (thick and thin disks, and halo).
We report the detection of a Saturn-size exoplanet orbiting HD 332231 (TOI 1456) in light curves from the Transiting Exoplanet Survey Satellite (TESS). HD 332231, an F8 dwarf star with a V-band magnitude of 8.56, was observed by TESS in Sectors 14 and 15. We detect a single-transit event in the Sector 15 presearch data conditioning (PDC) light curve. We obtain spectroscopic follow-up observations of HD 332231 with the Automated Planet Finder, Keck I, and SONG telescopes. The orbital period we infer from the radial velocity (RV) observations leads to the discovery of another transit in Sector 14 that was masked by PDC due to scattered light contamination. A joint analysis of the transit and RV data confirms the planetary nature of HD 332231 b, a Saturn-size ($0.867^{+0.027}_{-0.025} ; R_{rm J}$), sub-Saturn-mass ($0.244pm0.021 ; M_{rm J}$) exoplanet on a 18.71 day circular orbit. The low surface gravity of HD 332231 b and the relatively low stellar flux it receives make it a compelling target for transmission spectroscopy. Also, the stellar obliquity is likely measurable via the Rossiter-McLaughlin effect, an exciting prospect given the 0.14 au orbital separation of HD 332231 b. The spectroscopic observations do not provide substantial evidence for any additional planets in the HD 332231 system, but continued RV monitoring is needed to further characterize this system. We also predict that the frequency and duration of masked data in the PDC light curves for TESS Sectors 14-16 could hide transits of some exoplanets with orbital periods between 10.5 and 17.5 days.
We report on the discovery and validation of a two-planet system around a bright (V = 8.85 mag) early G dwarf (1.43 $R_{odot}$, 1.15 $M_{odot}$, TOI 2319) using data from NASAs Transiting Exoplanet Survey Satellite (TESS). Three transit events from two planets were detected by citizen scientists in the month-long TESS light curve (sector 25), as part of the Planet Hunters TESS project. Modelling of the transits yields an orbital period of Pb and radius of $3.41 _{ - 0.12 } ^ { + 0.14 }$ $R_{oplus}$ for the inner planet, and a period in the range 19.26-35 days and a radius of $5.83 _{ - 0.14 } ^ { + 0.14 }$ $R_{oplus}$ for the outer planet, which was only seen to transit once. Each signal was independently statistically validated, taking into consideration the TESS light curve as well as the ground-based spectroscopic follow-up observations. Radial velocities from HARPS-N and EXPRES yield a tentative detection of planet b, whose mass we estimate to be $11.56 _{ - 6.14 } ^ { + 6.58 }$ $M_{oplus}$, and allow us to place an upper limit of $27.5$ $M_{oplus}$ (99 per cent confidence) on the mass of planet c. Due to the brightness of the host star and the strong likelihood of an extended H/He atmosphere on both planets, this system offers excellent prospects for atmospheric characterisation and comparative planetology.