No Arabic abstract
Carbonaceous nano-grains are present at the surface of protoplanetary disks around Herbig Ae/Be stars, where most of the central star UV energy is dissipated. Efficiently coupled to the gas, nano-grains are able to trace the disk outer flaring parts, and possibly the gaps from which the larger grains are missing. We examine the spatial distribution and evolution of the nano-dust emission in the (pre-)transitional disk HD100546 that shows annular gaps, rings, and spirals, and reveals rich carbon nano-dust spectroscopic signatures (aromatic, aliphatic) in a wide spatial range (~20-200au). We analyse adaptive optics spectroscopic observations from 3 to 4um and imaging and spectroscopic observations from 8 to 12um. We compare the data to model predictions using the THEMIS model with the radiative transfer code POLARIS calculating heating of micro- and nanometric dust grains for a given disk structure. The aromatic features at 3.3, 8.6 and 11.3um, as well as, the aliphatic ones from 3.4 to 3.5um are spatially extended with band morphologies dependong on local physical conditions. The aliphatic-to-aromatic band ratio 3.4/3.3 increases with the distance from the star suggesting UV processing. In the 8-12um observed spectra, features characteristic of aromatic particles and crystalline silicates are detected with their relative contribution changing with distance to the star. The model predicts that the features and adjacent continuum are due to different combinations of grain sub-populations, with a dependence on the UV field intensity. Shorter wavelength features are dominated by the smallest grains (< 0.7nm) throughout the disk, while at longer wavelengths what dominates the emission close to the star is a mix of several grain populations, and far away from the star is the largest nano-grain population.
The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimeter dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of $approx$50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.
The nearby Herbig Be star HD100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk that is carved by at least 2 gaps. We observed the HD100546 environment with high contrast imaging exploiting several different observing modes of SPHERE, including datasets with/without coronagraphs, dual band imaging, integral field spectroscopy and polarimetry. The picture emerging from these different data sets is complex. Flux-conservative algorithms images clearly show the disk up to 200au. More aggressive algorithms reveal several rings and warped arms overlapping the main disk. The bright parts of this ring lie at considerable height over the disk mid-plane at about 30au. Our images demonstrate that the brightest wings close to the star in the near side of the disk are a unique structure, corresponding to the outer edge of the intermediate disk at ~40au. Modeling of the scattered light from the disk with a geometrical algorithm reveals that a moderately thin structure can well reproduce the light distribution in the flux-conservative images. We suggest that the gap between 44 and 113 au span between the 1:2 and 3:2 resonance orbits of a massive body located at ~70au that might coincide with the candidate planet HD100546b detected with previous thermal IR observations. In this picture, the two wings can be the near side of a ring formed by disk material brought out of the disk at the 1:2 resonance with the same massive object. While we find no clear evidence confirming detection of the planet candidate HD100546c in our data, we find a diffuse emission close to the expected position of HD100546b. This source can be described as an extremely reddened substellar object surrounded by a dust cloud or its circumplanetary disk. Its astrometry is broadly consistent with a circular orbital motion on the disk plane.
The disk atmosphere is one of the fundamental elements of theoretical models of a protoplanetary disk. However, the direct observation of the warm gas (>> 100 K) at large radius of a disk (>> 10 AU) is challenging, because the line emission from warm gas in a disk is usually dominated by the emission from an inner disk. Our goal is to detect the warm gas in the disk atmosphere well beyond 10 AU from a central star in a nearby disk system of the Herbig Be star HD 100546. We measured the excitation temperature of the vibrational transition of CO at incremental radii of the disk from the central star up to 50 AU, using an adaptive optics system combined with the high-resolution infrared spectrograph CRIRES at the VLT. The observation successfully resolved the line emission with 0.1 angular resolution, which is 10 AU at the distance of HD 100546. Population diagrams were constructed at each location of the disk, and compared with the models calculated taking into account the optical depth effect in LTE condition. The excitation temperature of CO is 400-500 K or higher at 50 AU away from the star, where the blackbody temperature in equilibrium with the stellar radiation drops as low as 90 K. This is unambiguous evidence of a warm disk atmosphere far away from the central star.
We refine the gap size measurements of the disk surrounding the Herbig Ae star HD 100546 in the N band. Our new mid-infrared interferometric (MIDI) data have been taken with the UT baselines and span the full range of orientations. The correlated fluxes show a wavy pattern in which the minima separation links to a geometrical structure in the disk. We fit each correlated flux measurement with a spline function, deriving the corresponding spatial scale, while assuming that the pattern arises interferometrically due to the bright emission from the inner disk and the opposing sides of the wall of the outer disk. We then fit an ellipse to the derived separations at their corresponding position angles, thereby using the observations to constrain the disk inclination to i =47 +/- 1 degree and the disk position angle to PA =135.0 +/- 2.5 degree East of North, both of which are consistent with the estimated values in previous studies. We also derive the radius of the ellipse to 15.7 +/- 0.8 au. To confirm that the minima separations translate to a geometrical structure in the disk, we model the disk of HD 100546 using a semi-analytical approach taking into account the temperature and optical depth gradients. Using this model, we simultaneously reproduce the level and the minima of the correlated fluxes and constrain the gap size of the disk for each observation. The values obtained for the projected gap size in different orientations are consistent with the separation found by the geometrical model.
HD 100546 is a well-studied Herbig Be star-disk system that likely hosts a close-in companion with compelling observational evidence for an embedded protoplanet at 68 AU. We present ALMA observations of the HD 100546 disk which resolve the gas and dust structure at (sub)mm wavelengths. The CO emission (at 345.795 GHz) originates from an extensive molecular disk (390+/-20 AU in radius) whereas the continuum emission is more compact (230+/-20 AU in radius) suggesting radial drift of the mm-sized grains. The CO emission is similar in extent to scattered light images indicating well-mixed gas and um-sized grains in the disk atmosphere. Assuming azimuthal symmetry, a single-component power-law model cannot reproduce the continuum visibilities. The visibilities and images are better reproduced by a double-component model: a compact ring with a width of 21 AU centered at 26 AU and an outer ring with a width of 75+/-3 AU centered at 190+/-3 AU. The influence of a companion and protoplanet on the dust evolution is investigated. The companion at 10 AU facilitates the accumulation of mm-sized grains within a compact ring, ~ 20 - 30 AU, by ~ 10 Myr. The injection of a protoplanet at 1 Myr hastens the ring formation (~ 1.2 Myr) and also triggers the development of an outer ring (~ 100 - 200 AU). These observations provide additional evidence for the presence of a close-in companion and hint at dynamical clearing by a protoplanet in the outer disk.