No Arabic abstract
We call a $4$-cycle in $K_{n_{1}, n_{2}, n_{3}}$ multipartite, denoted by $C_{4}^{text{multi}}$, if it contains at least one vertex in each part of $K_{n_{1}, n_{2}, n_{3}}$. The Turan number $text{ex}(K_{n_{1},n_{2},n_{3}}, C_{4}^{text{multi}})$ $bigg($ respectively, $text{ex}(K_{n_{1},n_{2},n_{3}},{C_{3}, C_{4}^{text{multi}}})$ $bigg)$ is the maximum number of edges in a graph $Gsubseteq K_{n_{1},n_{2},n_{3}}$ such that $G$ contains no $C_{4}^{text{multi}}$ $bigg($ respectively, $G$ contains neither $C_{3}$ nor $C_{4}^{text{multi}}$ $bigg)$. We call a $C^{multi}_4$ rainbow if all four edges of it have different colors. The ant-Ramsey number $text{ar}(K_{n_{1},n_{2},n_{3}}, C_{4}^{text{multi}})$ is the maximum number of colors in an edge-colored of $K_{n_{1},n_{2},n_{3}}$ with no rainbow $C_{4}^{text{multi}}$. In this paper, we determine that $text{ex}(K_{n_{1},n_{2},n_{3}}, C_{4}^{text{multi}})=n_{1}n_{2}+2n_{3}$ and $text{ar}(K_{n_{1},n_{2},n_{3}}, C_{4}^{text{multi}})=text{ex}(K_{n_{1},n_{2},n_{3}}, {C_{3}, C_{4}^{text{multi}}})+1=n_{1}n_{2}+n_{3}+1,$ where $n_{1}ge n_{2}ge n_{3}ge 1.$
Let $mathrm{rex}(n, F)$ denote the maximum number of edges in an $n$-vertex graph that is regular and does not contain $F$ as a subgraph. We give lower bounds on $mathrm{rex}(n, F)$, that are best possible up to a constant factor, when $F$ is one of $C_4$, $K_{2,t}$, $K_{3,3}$ or $K_{s,t}$ when $t>s!$.
In this paper we study Turan and Ramsey numbers in linear triple systems, defined as $3$-uniform hypergraphs in which any two triples intersect in at most one vertex. A famous result of Ruzsa and Szemeredi is that for any fixed $c>0$ and large enough $n$ the following Turan-type theorem holds. If a linear triple system on $n$ vertices has at least $cn^2$ edges then it contains a {em triangle}: three pairwise intersecting triples without a common vertex. In this paper we extend this result from triangles to other triple systems, called {em $s$-configurations}. The main tool is a generalization of the induced matching lemma from $aba$-patterns to more general ones. We slightly generalize $s$-configurations to {em extended $s$-configurations}. For these we cannot prove the corresponding Turan-type theorem, but we prove that they have the weaker, Ramsey property: they can be found in any $t$-coloring of the blocks of any sufficiently large Steiner triple system. Using this, we show that all unavoidable configurations with at most 5 blocks, except possibly the ones containing the sail $C_{15}$ (configuration with blocks 123, 345, 561 and 147), are $t$-Ramsey for any $tgeq 1$. The most interesting one among them is the {em wicket}, $D_4$, formed by three rows and two columns of a $3times 3$ point matrix. In fact, the wicket is $1$-Ramsey in a very strong sense: all Steiner triple systems except the Fano plane must contain a wicket.
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,t$, we determine the complementary Ramsey numbers $bar{R}(m,t,s)$ for $(s,t)=(4,4)$ and $(3,6)$.
The theta graph $Theta_{ell,t}$ consists of two vertices joined by $t$ vertex-disjoint paths of length $ell$ each. For fixed odd $ell$ and large $t$, we show that the largest graph not containing $Theta_{ell,t}$ has at most $c_{ell} t^{1-1/ell}n^{1+1/ell}$ edges and that this is tight apart from the value of $c_{ell}$.
Given graphs $H_1, dots, H_t$, a graph $G$ is $(H_1, dots, H_t)$-Ramsey-minimal if every $t$-coloring of the edges of $G$ contains a monochromatic $H_i$ in color $i$ for some $iin{1, dots, t}$, but any proper subgraph of $G $ does not possess this property. We define $mathcal{R}_{min}(H_1, dots, H_t)$ to be the family of $(H_1, dots, H_t)$-Ramsey-minimal graphs. A graph $G$ is dfn{$mathcal{R}_{min}(H_1, dots, H_t)$-saturated} if no element of $mathcal{R}_{min}(H_1, dots, H_t)$ is a subgraph of $G$, but for any edge $e$ in $overline{G}$, some element of $mathcal{R}_{min}(H_1, dots, H_t)$ is a subgraph of $G + e$. We define $sat(n, mathcal{R}_{min}(H_1, dots, H_t))$ to be the minimum number of edges over all $mathcal{R}_{min}(H_1, dots, H_t)$-saturated graphs on $n$ vertices. In 1987, Hanson and Toft conjectured that $sat(n, mathcal{R}_{min}(K_{k_1}, dots, K_{k_t}) )= (r - 2)(n - r + 2)+binom{r - 2}{2} $ for $n ge r$, where $r=r(K_{k_1}, dots, K_{k_t})$ is the classical Ramsey number for complete graphs. The first non-trivial case of Hanson and Tofts conjecture for sufficiently large $n$ was setteled in 2011, and is so far the only settled case. Motivated by Hanson and Tofts conjecture, we study the minimum number of edges over all $mathcal{R}_{min}(K_3, mathcal{T}_k)$-saturated graphs on $n$ vertices, where $mathcal{T}_k$ is the family of all trees on $k$ vertices. We show that for $n ge 18$, $sat(n, mathcal{R}_{min}(K_3, mathcal{T}_4)) =lfloor {5n}/{2}rfloor$. For $k ge 5$ and $n ge 2k + (lceil k/2 rceil +1) lceil k/2 rceil -2$, we obtain an asymptotic bound for $sat(n, mathcal{R}_{min}(K_3, mathcal{T}_k))$.