Do you want to publish a course? Click here

Saturation numbers for Ramsey-minimal graphs

229   0   0.0 ( 0 )
 Added by Zi-Xia Song
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Given graphs $H_1, dots, H_t$, a graph $G$ is $(H_1, dots, H_t)$-Ramsey-minimal if every $t$-coloring of the edges of $G$ contains a monochromatic $H_i$ in color $i$ for some $iin{1, dots, t}$, but any proper subgraph of $G $ does not possess this property. We define $mathcal{R}_{min}(H_1, dots, H_t)$ to be the family of $(H_1, dots, H_t)$-Ramsey-minimal graphs. A graph $G$ is dfn{$mathcal{R}_{min}(H_1, dots, H_t)$-saturated} if no element of $mathcal{R}_{min}(H_1, dots, H_t)$ is a subgraph of $G$, but for any edge $e$ in $overline{G}$, some element of $mathcal{R}_{min}(H_1, dots, H_t)$ is a subgraph of $G + e$. We define $sat(n, mathcal{R}_{min}(H_1, dots, H_t))$ to be the minimum number of edges over all $mathcal{R}_{min}(H_1, dots, H_t)$-saturated graphs on $n$ vertices. In 1987, Hanson and Toft conjectured that $sat(n, mathcal{R}_{min}(K_{k_1}, dots, K_{k_t}) )= (r - 2)(n - r + 2)+binom{r - 2}{2} $ for $n ge r$, where $r=r(K_{k_1}, dots, K_{k_t})$ is the classical Ramsey number for complete graphs. The first non-trivial case of Hanson and Tofts conjecture for sufficiently large $n$ was setteled in 2011, and is so far the only settled case. Motivated by Hanson and Tofts conjecture, we study the minimum number of edges over all $mathcal{R}_{min}(K_3, mathcal{T}_k)$-saturated graphs on $n$ vertices, where $mathcal{T}_k$ is the family of all trees on $k$ vertices. We show that for $n ge 18$, $sat(n, mathcal{R}_{min}(K_3, mathcal{T}_4)) =lfloor {5n}/{2}rfloor$. For $k ge 5$ and $n ge 2k + (lceil k/2 rceil +1) lceil k/2 rceil -2$, we obtain an asymptotic bound for $sat(n, mathcal{R}_{min}(K_3, mathcal{T}_k))$.



rate research

Read More

We study graphs with the property that every edge-colouring admits a monochromatic cycle (the length of which may depend freely on the colouring) and describe those graphs that are minimal with this property. We show that every member in this class reduces recursively to one of the base graphs $K_5-e$ or $K_4vee K_4$ (two copies of $K_4$ identified at an edge), which implies that an arbitrary $n$-vertex graph with $e(G)geq 2n-1$ must contain one of those as a minor. We also describe three explicit constructions governing the reverse process. As an application we are able to establish Ramsey infiniteness for each of the three possible chromatic subclasses $chi=2, 3, 4$, the unboundedness of maximum degree within the class as well as Ramsey separability of the family of cycles of length $leq l$ from any of its proper subfamilies.
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,t$, we determine the complementary Ramsey numbers $bar{R}(m,t,s)$ for $(s,t)=(4,4)$ and $(3,6)$.
We estimate Ramsey numbers for bipartite graphs with small bandwidth and bounded maximum degree. In particular we determine asymptotically the two and three color Ramsey numbers for grid graphs. More generally, we determine asymptotically the two color Ramsey number for bipartite graphs with small bandwidth and bounded maximum degree and the three color Ramsey number for such graphs with the additional assumption that the bipartite graph is balanced.
For an integer $qge 2$, a graph $G$ is called $q$-Ramsey for a graph $H$ if every $q$-colouring of the edges of $G$ contains a monochromatic copy of $H$. If $G$ is $q$-Ramsey for $H$, yet no proper subgraph of $G$ has this property then $G$ is called $q$-Ramsey-minimal for $H$. Generalising a statement by Burr, Nev{s}etv{r}il and Rodl from 1977 we prove that, for $qge 3$, if $G$ is a graph that is not $q$-Ramsey for some graph $H$ then $G$ is contained as an induced subgraph in an infinite number of $q$-Ramsey-minimal graphs for $H$, as long as $H$ is $3$-connected or isomorphic to the triangle. For such $H$, the following are some consequences. (1) For $2le r< q$, every $r$-Ramsey-minimal graph for $H$ is contained as an induced subgraph in an infinite number of $q$-Ramsey-minimal graphs for $H$. (2) For every $qge 3$, there are $q$-Ramsey-minimal graphs for $H$ of arbitrarily large maximum degree, genus, and chromatic number. (3) The collection ${{cal M}_q(H) : H text{ is 3-connected or } K_3}$ forms an antichain with respect to the subset relation, where ${cal M}_q(H)$ denotes the set of all graphs that are $q$-Ramsey-minimal for $H$. We also address the question which pairs of graphs satisfy ${cal M}_q(H_1)={cal M}_q(H_2)$, in which case $H_1$ and $H_2$ are called $q$-equivalent. We show that two graphs $H_1$ and $H_2$ are $q$-equivalent for even $q$ if they are $2$-equivalent, and that in general $q$-equivalence for some $qge 3$ does not necessarily imply $2$-equivalence. Finally we indicate that for connected graphs this implication may hold: Results by Nev{s}etv{r}il and Rodl and by Fox, Grinshpun, Liebenau, Person and Szabo imply that the complete graph is not $2$-equivalent to any other connected graph. We prove that this is the case for an arbitrary number of colours.
We prove that $s_r(K_k) = O(k^5 r^{5/2})$, where $s_r(K_k)$ is the Ramsey parameter introduced by Burr, ErdH{o}s and Lov{a}sz in 1976, which is defined as the smallest minimum degree of a graph $G$ such that any $r$-colouring of the edges of $G$ contains a monochromatic $K_k$, whereas no proper subgraph of $G$ has this property. The construction used in our proof relies on a group theoretic model of generalised quadrangles introduced by Kantor in 1980.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا