Do you want to publish a course? Click here

A new RKHS-based global testing for functional linear model

60   0   0.0 ( 0 )
 Added by Jianjun Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This article studies global testing of the slope function in functional linear regression model in the framework of reproducing kernel Hilbert space. We propose a new testing statistic based on smoothness regularization estimators. The asymptotic distribution of the testing statistic is established under null hypothesis. It is shown that the null asymptotic distribution is determined jointly by the reproducing kernel and the covariance function. Our theoretical analysis shows that the proposed testing is consistent over a class of smooth local alternatives. Despite the generality of the method of regularization, we show the procedure is easily implementable. Numerical examples are provided to demonstrate the empirical advantages over the competing methods.



rate research

Read More

Recently, the well known Liu estimator (Liu, 1993) is attracted researchers attention in regression parameter estimation for an ill conditioned linear model. It is also argued that imposing sub-space hypothesis restriction on parameters improves estimation by shrinking toward non-sample information. Chang (2015) proposed the almost unbiased Liu estimator (AULE) in the binary logistic regression. In this article, some improved unbiased Liu type estimators, namely, restricted AULE, preliminary test AULE, Stein-type shrinkage AULE and its positive part for estimating the regression parameters in the binary logistic regression model are proposed based on the work Chang (2015). The performances of the newly defined estimators are analysed through some numerical results. A real data example is also provided to support the findings.
In functional linear regression, the slope ``parameter is a function. Therefore, in a nonparametric context, it is determined by an infinite number of unknowns. Its estimation involves solving an ill-posed problem and has points of contact with a range of methodologies, including statistical smoothing and deconvolution. The standard approach to estimating the slope function is based explicitly on functional principal components analysis and, consequently, on spectral decomposition in terms of eigenvalues and eigenfunctions. We discuss this approach in detail and show that in certain circumstances, optimal convergence rates are achieved by the PCA technique. An alternative approach based on quadratic regularisation is suggested and shown to have advantages from some points of view.
82 - Antoine Chambaz 2006
This paper deals with order identification for nested models in the i.i.d. framework. We study the asymptotic efficiency of two generalized likelihood ratio tests of the order. They are based on two estimators which are proved to be strongly consistent. A version of Steins lemma yields an optimal underestimation error exponent. The lemma also implies that the overestimation error exponent is necessarily trivial. Our tests admit nontrivial underestimation error exponents. The optimal underestimation error exponent is achieved in some situations. The overestimation error can decay exponentially with respect to a positive power of the number of observations. These results are proved under mild assumptions by relating the underestimation (resp. overestimation) error to large (resp. moderate) deviations of the log-likelihood process. In particular, it is not necessary that the classical Cram{e}r condition be satisfied; namely, the $log$-densities are not required to admit every exponential moment. Three benchmark examples with specific difficulties (location mixture of normal distributions, abrupt changes and various regressions) are detailed so as to illustrate the generality of our results.
In this paper we consider the linear regression model $Y =S X+varepsilon $ with functional regressors and responses. We develop new inference tools to quantify deviations of the true slope $S$ from a hypothesized operator $S_0$ with respect to the Hilbert--Schmidt norm $| S- S_0|^2$, as well as the prediction error $mathbb{E} | S X - S_0 X |^2$. Our analysis is applicable to functional time series and based on asymptotically pivotal statistics. This makes it particularly user friendly, because it avoids the choice of tuning parameters inherent in long-run variance estimation or bootstrap of dependent data. We also discuss two sample problems as well as change point detection. Finite sample properties are investigated by means of a simulation study. Mathematically our approach is based on a sequential version of the popular spectral cut-off estimator $hat S_N$ for $S$. It is well-known that the $L^2$-minimax rates in the functional regression model, both in estimation and prediction, are substantially slower than $1/sqrt{N}$ (where $N$ denotes the sample size) and that standard estimators for $S$ do not converge weakly to non-degenerate limits. However, we demonstrate that simple plug-in estimators - such as $| hat S_N - S_0 |^2$ for $| S - S_0 |^2$ - are $sqrt{N}$-consistent and its sequenti
In a regression setting with response vector $mathbf{y} in mathbb{R}^n$ and given regressor vectors $mathbf{x}_1,ldots,mathbf{x}_p in mathbb{R}^n$, a typical question is to what extent $mathbf{y}$ is related to these regressor vectors, specifically, how well can $mathbf{y}$ be approximated by a linear combination of them. Classical methods for this question are based on statistical models for the conditional distribution of $mathbf{y}$, given the regressor vectors $mathbf{x}_j$. Davies and Duembgen (2020) proposed a model-free approach in which all observation vectors $mathbf{y}$ and $mathbf{x}_j$ are viewed as fixed, and the quality of the least squares fit of $mathbf{y}$ is quantified by comparing it with the least squares fit resulting from $p$ independent white noise regressor vectors. The purpose of the present note is to explain in a general context why the model-based and model-free approach yield the same p-values, although the interpretation of the latter is different under the two paradigms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا