Do you want to publish a course? Click here

Fragile, yet resilient: Adaptive decline in a collaboration network of firms

297   0   0.0 ( 0 )
 Added by Frank Schweitzer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamics of collaboration networks of firms follow a life-cycle of growth and decline. That does not imply they also become less resilient. Instead, declining collaboration networks may still have the ability to mitigate shocks from firms leaving, and to recover from these losses by adapting to new partners. To demonstrate this, we analyze 21.500 R&D collaborations of 14.500 firms in six different industrial sectors over 25 years. We calculate time-dependent probabilities of firms leaving the network and simulate drop-out cascades, to determine the expected dynamics of decline. We then show that deviations from these expectations result from the adaptivity of the network, which mitigates the decline. These deviations can be used as a measure of network resilience.



rate research

Read More

We study structural changes of adaptive networks in the co-evolutionary susceptible-infected-susceptible (SIS) network model along its phase transition. We clarify to what extent these changes can be used as early-warning signs for the transition at the critical infection rate $lambda_c$ at which the network collapses and the system disintegrates. We analyze the interplay between topology and node-state dynamics near criticality. Several network measures exhibit clear maxima or minima close to the critical threshold that could potentially serve as early-warning signs. These measures include the $SI$ link density, triplet densities, clustering, assortativity and the eigenvalue gap. For the $SI$ link density and triplet densities the maximum is found to originate from the co-existence of two power laws. Other network quantities, such as the degree, the branching ratio, or the harmonic mean distance, show scaling with a singularity at $lambda=0$ and not at $lambda_c$, which means that they are incapable of detecting the transition.
Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such games, contributions to the public good are made only by cooperators, while all players, including defectors, can reap public goods benefits. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a network without spatial constraints in which players adapt to their environment in order to increase individual payoffs. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.
Online social media allows individuals to cluster around common interests - including hate. We show that tight-knit social clusters interlink to form resilient global hate highways that bridge independent social network platforms, countries, languages and ideologies, and can quickly self-repair and rewire. We provide a mathematical theory that reveals a hidden resilience in the global axis of hate; explains a likely ineffectiveness of current control methods; and offers improvements. Our results reveal new science for networks-of-networks driven by bipartite dynamics, and should apply more broadly to illicit networks.
In this paper we analyse the bipartite Colombian firms-products network, throughout a period of five years, from 2010 to 2014. Our analysis depicts a strongly modular system, with several groups of firms specializing in the export of specific categories of products. These clusters have been detected by running the bipartite variant of the traditional modularity maximization, revealing a bi-modular structure. Interestingly, this finding is refined by applying a recently-proposed algorithm for projecting bipartite networks on the layer of interest and, then, running the Louvain algorithm on the resulting monopartite representations. Important structural differences emerge upon comparing the Colombian firms-products network with the World Trade Web, in particular, the bipartite representation of the latter is not characterized by a similar block-structure, as the modularity maximization fails in revealing (bipartite) nodes clusters. This points out that economic systems behave differently at different scales: while countries tend to diversify their production --potentially exporting a large number of different products-- firms specialize in exporting (substantially very limited) baskets of basically homogeneous products.
One can point to a variety of historical milestones for gender equality in STEM (science, technology, engineering, and mathematics), however, practical effects are incremental and ongoing. It is important to quantify gender differences in subdomains of scientific work in order to detect potential biases and monitor progress. In this work, we study the relevance of gender in scientific collaboration patterns in the Institute for Operations Research and the Management Sciences (INFORMS), a professional society with sixteen peer-reviewed journals. Using their publication data from 1952 to 2016, we constructed a large temporal bipartite network between authors and publications, and augmented the author nodes with gender labels. We characterized differences in several basic statistics of this network over time, highlighting how they have changed with respect to relevant historical events. We find a steady increase in participation by women (e.g., fraction of authorships by women and of new women authors) starting around 1980. However, women still comprise less than 25% of the INFORMS society and an even smaller fraction of authors with many publications. Moreover, we describe a methodology for quantifying the structural role of an authorship with respect to the overall connectivity of the network, using it to measure subtle differences between authorships by women and by men. Specifically, as measures of structural importance of an authorship, we use effective resistance and contraction importance, two measures related to diffusion throughout a network. As a null model, we propose a degree-preserving temporal and geometric network model with emergent communities. Our results suggest the presence of systematic differences between the collaboration patterns of men and women that cannot be explained by only local statistics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا