Do you want to publish a course? Click here

A mass-energy-conserving discontinuous Galerkin scheme for the isotropic multispecies Rosenbluth--Fokker--Planck equation

146   0   0.0 ( 0 )
 Added by Takashi Shiroto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Structure-preserving discretization of the Rosenbluth-Fokker-Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth-Fokker-Planck scheme is introduced. The structure related to the energy conservation is skew-symmetry in mathematical sense, and the action-reaction law in physical sense. A thermal relaxation term is obtained by using integration-by-parts on a volume integral of the energy moment equation, so the discontinuous Galerkin method is selected to preserve the skew-symmetry. The discontinuous Galerkin method enables ones to introduce the nonlinear upwind flux without violating the conservation laws. Some experiments show that the conservative scheme maintains the mass-energy-conservation only with round-off errors, and analytic equilibria are reproduced only with truncation errors of its formal accuracy.



rate research

Read More

The robustness and accuracy of marginally resolved discontinuous Galerkin spectral element computations are evaluated for the standard formulation and a kinetic energy conserving split form on complex flow problems of physical and engineering interest, including the flow over a square cylinder, an airfoil and a plane jet. It is shown that the kinetic energy conserving formulation is significantly more robust than the standard scheme for under-resolved simulations. A disadvantage of the split form is the restriction to Gauss-Lobatto nodes with the inherent underintegration and lower accuracy as compared to Gauss quadrature used with the standard scheme. While the results support the higher accuracy of the standard Gauss form, lower numerical robustness and spurious oscillations are evident in some cases, giving the advantage to the kinetic energy conserving scheme for marginally resolved numerical simulations.
65 - M.A. Malkov 2016
An analytic solution for a Fokker-Planck equation that describes propagation of energetic particles through a scattering medium is obtained. The solution is found in terms of an infinite series of mixed moments of particle distribution. The spatial dispersion of a particle cloud released at t=0 evolves through three phases, ballistic (t<Tc), transdiffusive (t~Tc) and diffusive (t>>Tc), where Tc is the collision time.The ballistic phase is characterized by a decelerating expansion of the initial point source in form of a box distribution with thickening walls. The next, transdiffusive phase is marked by the box walls thickened to its size and a noticeable slow down of expansion. Finally, the evolution enters the conventional diffusion phase.
In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using the convolution operator while the second one is solved approximately using a variational scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. We prove the convergence of the scheme to a weak solution to FKFPE. As a by-product of our analysis, we also establish a variational formulation for a kinetic transport equation that is relevant in the second phase. Finally, we discuss some extensions of our analysis to more complex systems.
Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.
In this paper, we develop a new mass conservative numerical scheme for the simulations of a class of fluid-structure interaction problems. We will use the immersed boundary method to model the fluid-structure interaction, while the fluid flow is governed by the incompressible Navier-Stokes equations. The immersed boundary method is proven to be a successful scheme to model fluid-structure interactions. To ensure mass conservation, we will use the staggered discontinuous Galerkin method to discretize the incompressible Navier-Stokes equations. The staggered discontinuous Galerkin method is able to preserve the skew-symmetry of the convection term. In addition, by using a local postprocessing technique, the weakly divergence free velocity can be used to compute a new postprocessed velocity, which is exactly divergence free and has a superconvergence property. This strongly divergence free velocity field is the key to the mass conservation. Furthermore, energy stability is improved by the skew-symmetric discretization of the convection term. We will present several numerical results to show the performance of the method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا