Do you want to publish a course? Click here

FBWave: Efficient and Scalable Neural Vocoders for Streaming Text-To-Speech on the Edge

126   0   0.0 ( 0 )
 Added by Bichen Wu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Nowadays more and more applications can benefit from edge-based text-to-speech (TTS). However, most existing TTS models are too computationally expensive and are not flexible enough to be deployed on the diverse variety of edge devices with their equally diverse computational capacities. To address this, we propose FBWave, a family of efficient and scalable neural vocoders that can achieve optimal performance-efficiency trade-offs for different edge devices. FBWave is a hybrid flow-based generative model that combines the advantages of autoregressive and non-autoregressive models. It produces high quality audio and supports streaming during inference while remaining highly computationally efficient. Our experiments show that FBWave can achieve similar audio quality to WaveRNN while reducing MACs by 40x. More efficient variants of FBWave can achieve up to 109x fewer MACs while still delivering acceptable audio quality. Audio demos are available at https://bichenwu09.github.io/vocoder_demos.



rate research

Read More

In this paper, we present a streaming end-to-end speech recognition model based on Monotonic Chunkwise Attention (MoCha) jointly trained with enhancement layers. Even though the MoCha attention enables streaming speech recognition with recognition accuracy comparable to a full attention-based approach, training this model is sensitive to various factors such as the difficulty of training examples, hyper-parameters, and so on. Because of these issues, speech recognition accuracy of a MoCha-based model for clean speech drops significantly when a multi-style training approach is applied. Inspired by Curriculum Learning [1], we introduce two training strategies: Gradual Application of Enhanced Features (GAEF) and Gradual Reduction of Enhanced Loss (GREL). With GAEF, the model is initially trained using clean features. Subsequently, the portion of outputs from the enhancement layers gradually increases. With GREL, the portion of the Mean Squared Error (MSE) loss for the enhanced output gradually reduces as training proceeds. In experimental results on the LibriSpeech corpus and noisy far-field test sets, the proposed model with GAEF-GREL training strategies shows significantly better results than the conventional multi-style training approach.
205 - Haibin Wu , Po-chun Hsu , Ji Gao 2021
Automatic speaker verification (ASV), one of the most important technology for biometric identification, has been widely adopted in security-critical applications, including transaction authentication and access control. However, previous work has shown that ASV is seriously vulnerable to recently emerged adversarial attacks, yet effective countermeasures against them are limited. In this paper, we adopt neural vocoders to spot adversarial samples for ASV. We use the neural vocoder to re-synthesize audio and find that the difference between the ASV scores for the original and re-synthesized audio is a good indicator for discrimination between genuine and adversarial samples. This effort is, to the best of our knowledge, among the first to pursue such a technical direction for detecting adversarial samples for ASV, and hence there is a lack of established baselines for comparison. Consequently, we implement the Griffin-Lim algorithm as the detection baseline. The proposed approach achieves effective detection performance that outperforms all the baselines in all the settings. We also show that the neural vocoder adopted in the detection framework is dataset-independent. Our codes will be made open-source for future works to do comparison.
This paper introduces a novel adversarial algorithm for attacking the state-of-the-art speech-to-text systems, namely DeepSpeech, Kaldi, and Lingvo. Our approach is based on developing an extension for the conventional distortion condition of the adversarial optimization formulation using the Cram`er integral probability metric. Minimizing over this metric, which measures the discrepancies between original and adversarial samples distributions, contributes to crafting signals very close to the subspace of legitimate speech recordings. This helps to yield more robust adversarial signals against playback over-the-air without employing neither costly expectation over transformation operations nor static room impulse response simulations. Our approach outperforms other targeted and non-targeted algorithms in terms of word error rate and sentence-level-accuracy with competitive performance on the crafted adversarial signals quality. Compared to seven other strong white and black-box adversarial attacks, our proposed approach is considerably more resilient against multiple consecutive playbacks over-the-air, corroborating its higher robustness in noisy environments.
123 - Zewang Zhang , Qiao Tian , Heng Lu 2020
This paper investigates how to leverage a DurIAN-based average model to enable a new speaker to have both accurate pronunciation and fluent cross-lingual speaking with very limited monolingual data. A weakness of the recently proposed end-to-end text-to-speech (TTS) systems is that robust alignment is hard to achieve, which hinders it to scale well with very limited data. To cope with this issue, we introduce AdaDurIAN by training an improved DurIAN-based average model and leverage it to few-shot learning with the shared speaker-independent content encoder across different speakers. Several few-shot learning tasks in our experiments show AdaDurIAN can outperform the baseline end-to-end system by a large margin. Subjective evaluations also show that AdaDurIAN yields higher mean opinion score (MOS) of naturalness and more preferences of speaker similarity. In addition, we also apply AdaDurIAN to emotion transfer tasks and demonstrate its promising performance.
In this paper, we present a novel two-pass approach to unify streaming and non-streaming end-to-end (E2E) speech recognition in a single model. Our model adopts the hybrid CTC/attention architecture, in which the conformer layers in the encoder are modified. We propose a dynamic chunk-based attention strategy to allow arbitrary right context length. At inference time, the CTC decoder generates n-best hypotheses in a streaming way. The inference latency could be easily controlled by only changing the chunk size. The CTC hypotheses are then rescored by the attention decoder to get the final result. This efficient rescoring process causes very little sentence-level latency. Our experiments on the open 170-hour AISHELL-1 dataset show that, the proposed method can unify the streaming and non-streaming model simply and efficiently. On the AISHELL-1 test set, our unified model achieves 5.60% relative character error rate (CER) reduction in non-streaming ASR compared to a standard non-streaming transformer. The same model achieves 5.42% CER with 640ms latency in a streaming ASR system.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا