Do you want to publish a course? Click here

Kapitza-Dirac blockade: A universal tool for the deterministic preparation of non-Gaussian oscillator states

116   0   0.0 ( 0 )
 Added by Wayne Huang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Harmonic oscillators count among the most fundamental quantum systems with important applications in molecular physics, nanoparticle trapping, and quantum information processing. Their equidistant energy level spacing is often a desired feature, but at the same time a challenge if the goal is to deterministically populate specific eigenstates. Here, we show how interference in the transition amplitudes in a bichromatic laser field can suppress the sequential climbing of harmonic oscillator states (Kapitza-Dirac blockade) and achieve selective excitation of energy eigenstates, Schr{o}dinger cats and other non-Gaussian states. This technique can transform the harmonic oscillator into a coherent two-level system or be used to build a large-momentum-transfer beam splitter for matter-waves. To illustrate the universality of the concept, we discuss feasible experiments that cover many orders of magnitude in mass, from single electrons over large molecules to dielectric nanoparticles.



rate research

Read More

75 - Marin Bukov 2018
I demonstrate the potential of reinforcement learning (RL) to prepare quantum states of strongly periodically driven non-linear single-particle models. The ability of Q-Learning to control systems far away from equilibrium is exhibited by steering the quantum Kapitza oscillator to the Floquet-engineered stable inverted position in the presence of a strong periodic drive within several shaking cycles. The study reveals the potential of the intra-period (micromotion) dynamics, often neglected in Floquet engineering, to take advantage over pure stroboscopic control at moderate drive frequencies. Without any knowledge about the underlying physical system, the algorithm is capable of learning solely from tried protocols and directly from simulated noisy quantum measurement data, and is stable to noise in the initial state, and sources of random failure events in the control sequence. Model-free RL can provide new insights into automating experimental setups for out-of-equilibrium systems undergoing complex dynamics, with potential applications in quantum information, quantum optics, ultracold atoms, trapped ions, and condensed matter.
We propose a protocol for coherently transferring non-Gaussian quantum states from optical field to a mechanical oscillator. The open quantum dynamics and continuous-measurement process, which can not be treated by the stochastic-master-equation formalism, are studied by a new path-integral-based approach. We obtain an elegant relation between the quantum state of the mechanical oscillator and that of the optical field, which is valid for general linear quantum dynamics. We demonstrate the experimental feasibility of such protocol by considering the cases of both large-scale gravitational-wave detectors and small-scale cavity-assisted optomechanical devices.
The generation of non-classical states of light via photon blockade with time-modulated input is analyzed. We show that improved single photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternative method, where the system is driven via a continuous wave laser and the frequency of the dipole is controlled (e.g. electrically) at very fast timescales is presented.
We present a heralded state preparation scheme for driven nonlinear open quantum systems. The protocol is based on a continuous photon counting measurement of the systems decay channel. When no photons are detected for a period of time, the system has relaxed to a measurement-induced pseudo-steady state. We illustrate the protocol by the creation of states with a negative Wigner function in a Kerr oscillator, a system whose unconditional steady state is strictly positive.
A proposal for the generation of singlet states of three $Lambda$-type Rydberg atoms is presented. The singlet state is prepared through the combination of a Rydberg state and an EPR pair, and the scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. In addition, some frequency detuning between lasers and atomic transitions is set to eliminate the degenerate of the two ground states. And finally, a series of numerical simulations are made to show the feasibility of the scheme.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا