Do you want to publish a course? Click here

Revealing the Accretion Physics of Supermassive Black Holes at Redshift z~7 with Chandra and Infrared Observations

486   0   0.0 ( 0 )
 Added by Feige Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray emission from quasars has been detected up to redshift $z=7.5$, although only limited to a few objects at $z>6.5$. In this work, we present new Chandra observations of five $z>6.5$ quasars. By combining with archival Chandra observations of six additional $z>6.5$ quasars, we perform a systematic analysis on the X-ray properties of these earliest accreting supermassive black holes (SMBHs). We measure the black hole masses, bolometric luminosities ($L_{rm bol}$), Eddington ratios ($lambda_{rm Edd}$), emission line properties, and infrared luminosities ($L_{rm IR}$) of these quasars using infrared and sub-millimeter observations. Correlation analysis indicates that the X-ray bolometric correction (the factor that converts from X-ray luminosity to bolometric luminosity) decreases with increasing $L_{rm bol}$, and that the UV/optical-to-X-ray ratio, $alpha_{rm ox}$, strongly correlates with $L_{rm 2500}$, and moderately correlates with $lambda_{rm Edd}$ and blueshift of CIV emission lines. These correlations are consistent with those found in lower-$z$ quasars, indicating quasar accretion physics does not evolve with redshift. We also find that $L_{rm IR}$ does not correlate with $L_{rm 2-10 keV}$ in these luminous distant quasars, suggesting that the ratio of the SMBH growth rate and their host galaxy growth rate in these early luminous quasars are different from those of local galaxies. A joint spectral analysis of the X-ray detected $z>6.5$ quasars yields an average X-ray photon index of $ Gamma=2.32^{+0.31}_{-0.30}$, steeper than that of low-$z$ quasars. By comparing it with the $Gamma-lambda_{rm Edd}$ relation, we conclude that the steepening of $Gamma$ for quasars at $z>6.5$ is mainly driven by their higher Eddington ratios.



rate research

Read More

The next generation of electromagnetic and gravitational wave observatories will open unprecedented windows to the birth of the first supermassive black holes. This has the potential to reveal their origin and growth in the first billion years, as well as the signatures of their formation history in the local Universe. With this in mind, we outline three key focus areas which will shape research in the next decade and beyond: (1) What were the seeds of the first quasars; how did some reach a billion solar masses before z$sim7$? (2) How does black hole growth change over cosmic time, and how did the early growth of black holes shape their host galaxies? What can we learn from intermediate mass black holes (IMBHs) and dwarf galaxies today? (3) Can we unravel the physics of black hole accretion, understanding both inflows and outflows (jets and winds) in the context of the theory of general relativity? Is it valid to use these insights to scale between stellar and supermassive BHs, i.e., is black hole accretion really scale invariant? In the following, we identify opportunities for the Canadian astronomical community to play a leading role in addressing these issues, in particular by leveraging our strong involvement in the Event Horizon Telescope, the {it James Webb Space Telescope} (JWST), Euclid, the Maunakea Spectroscopic Explorer (MSE), the Thirty Meter Telescope (TMT), the Square Kilometer Array (SKA), the Cosmological Advanced Survey Telescope for Optical and ultraviolet Research (CASTOR), and more. We also discuss synergies with future space-based gravitational wave (LISA) and X-ray (e.g., Athena, Lynx) observatories, as well as the necessity for collaboration with the stellar and galactic evolution communities to build a complete picture of the birth of supermassive black holes, and their growth and their influence over the history of the Universe.
509 - A. Lapi 2013
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed-up in X rays and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at high redshift z>1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ~0.5-1 Gyr, and then abruptly declines due to quasar feedback; over the same timescale, (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation and is temporarily stored into a massive reservoir/proto-torus wherefrom it can be promptly accreted; (iii) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L_Edd< 4, particularly at the highest redshifts; (iv) for massive BHs the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the latter has retained enough gas, a phase of supply-limited accretion follows exponentially declining with a timescale of about 2 e-folding times. We show that the ratio of the FIR luminosity of the host galaxy to the bolometric luminosity of the AGN maps the various stages of the above sequence. Finally, we discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly-lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next generation X-ray instruments.
We present analysis of Chandra X-ray observations of seven quasars that were identified as candidate sub-parsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey (CRTS) based on apparent periodicity in their optical light curves. Simulations predict close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs, including harder or softer X-ray spectra, ripple-like profiles in the Fe K-$alpha$ line, and distinct peaks in the spectrum due to the separation of the accretion disk into a circumbinary disk and mini-disks around each SMBH. We obtained Chandra observations to test these models and assess whether these quasars could contain binary SMBHs. We instead find that the quasar spectra are all well fit by simple absorbed power law models, with the rest frame 2-10 keV photon indices, $Gamma$, and the X-ray-to-optical power slopes, $alpha_{rm OX}$, indistinguishable from the larger quasar population. This may indicate that these seven quasars are not truly sub-parsec binary SMBH systems, or it may simply reflect that our sample size was too small to robustly detect any differences. Alternatively, the X-ray spectral changes might only be evident at higher energies than probed by Chandra. Given the available models and current data, no firm conclusions are drawn. These observations will help motivate and direct further work on theoretical models of binary SMBH systems, such as modeling systems with thinner accretion disks and larger binary separations.
131 - Lucio Mayer 2014
We present novel 3D multi-scale SPH simulations of gas-rich galaxy mergers between the most massive galaxies at $z sim 8 - 10$, designed to scrutinize the direct collapse formation scenario for massive black hole seeds proposed in citet{mayer+10}. The simulations achieve a resolution of 0.1 pc, and include both metallicity-dependent optically-thin cooling and a model for thermal balance at high optical depth. We consider different formulations of the SPH hydrodynamical equations, including thermal and metal diffusion. When the two merging galaxy cores collide, gas infall produces a compact, optically thick nuclear disk with densities exceeding $10^{-10}$ g cm$^3$. The disk rapidly accretes higher angular momentum gas from its surroundings reaching $sim 5$ pc and a mass of $gtrsim 10^9$ $M_{odot}$ in only a few $10^4$ yr. Outside $gtrsim 2$ pc it fragments into massive clumps. Instead, supersonic turbulence prevents fragmentation in the inner parsec region, which remains warm ($sim 3000-6000$ K) and develops strong non-axisymmetric modes that cause prominent radial gas inflows ($> 10^4$ $M_{odot}$ yr$^{-1}$), forming an ultra-dense massive disky core. Angular momentum transport by non-axisymmetric modes should continue below our spatial resolution limit, quickly turning the disky core into a supermassive protostar which can collapse directly into a massive black hole of mass $10^8-10^9$ $M_{odot}$ via the relativistic radial instability. Such a cold direct collapse explains naturally the early emergence of high-z QSOs. Its telltale signature would be a burst of gravitational waves in the frequency range $10^{-4} - 10^{-1}$ Hz, possibly detectable by the planned eLISA interferometer.
105 - J. Grindlay , J. Bloom , P. Coppi 2010
The epochs of origin of the first stars and galaxies, and subsequent growth of the first supermassive black holes, are among the most fundamental questions. Observations of the highest redshift Gamma-Ray Bursts (GRBs) will be the most compelling in situ probe of the history of initial star formation and consequent epoch of reionization if their prompt and precise detection can be followed immediately by sensitive near-IR imaging and spectroscopy. Blazars are the persistent analogs of GRBs and for the same reason (beaming) can be observed at highest redshifts where they might best trace the high accretion rate-driven jets and growth of supermassive black holes in galaxies. The proposed EXIST mission can uniquely probe these questions, and many others, given its unparalled combination of sensitivity and spatial-spectral-temporal coverage and resolution. Here we provide a brief summary of the mission design, key science objectives, mission plan and readiness for EXIST, as proposed to Astro2010.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا