No Arabic abstract
We present novel 3D multi-scale SPH simulations of gas-rich galaxy mergers between the most massive galaxies at $z sim 8 - 10$, designed to scrutinize the direct collapse formation scenario for massive black hole seeds proposed in citet{mayer+10}. The simulations achieve a resolution of 0.1 pc, and include both metallicity-dependent optically-thin cooling and a model for thermal balance at high optical depth. We consider different formulations of the SPH hydrodynamical equations, including thermal and metal diffusion. When the two merging galaxy cores collide, gas infall produces a compact, optically thick nuclear disk with densities exceeding $10^{-10}$ g cm$^3$. The disk rapidly accretes higher angular momentum gas from its surroundings reaching $sim 5$ pc and a mass of $gtrsim 10^9$ $M_{odot}$ in only a few $10^4$ yr. Outside $gtrsim 2$ pc it fragments into massive clumps. Instead, supersonic turbulence prevents fragmentation in the inner parsec region, which remains warm ($sim 3000-6000$ K) and develops strong non-axisymmetric modes that cause prominent radial gas inflows ($> 10^4$ $M_{odot}$ yr$^{-1}$), forming an ultra-dense massive disky core. Angular momentum transport by non-axisymmetric modes should continue below our spatial resolution limit, quickly turning the disky core into a supermassive protostar which can collapse directly into a massive black hole of mass $10^8-10^9$ $M_{odot}$ via the relativistic radial instability. Such a cold direct collapse explains naturally the early emergence of high-z QSOs. Its telltale signature would be a burst of gravitational waves in the frequency range $10^{-4} - 10^{-1}$ Hz, possibly detectable by the planned eLISA interferometer.
The formation of supermassive stars has generally been studied under the assumption of rapid accretion of pristine metal-free gas. Recently it was found, however, that gas enriched to metallicities up to $Z sim 10^{-3}$ Z$_{odot}$ can also facilitate supermassive star formation, as long as the total mass infall rate onto the protostar remains sufficiently high. We extend the analysis further by examining how the abundance of supermassive star candidate haloes would be affected if all haloes with super-critical infall rates, regardless of metallicity were included. We investigate this scenario by identifying all atomic cooling haloes in the Renaissance simulations with central mass infall rates exceeding a fixed threshold. We find that among these haloes with central mass infall rates above 0.1 M$_{odot}$ yr$^{-1}$ approximately two-thirds of these haloes have metallicities of $Z > 10^{-3}$ Z$_{odot}$. If metal mixing within these haloes is inefficient early in their assembly and pockets of metal-poor gas can remain then the number of haloes hosting supermassive stars can be increased by at least a factor of four. Additionally the centres of these high infall-rate haloes provide ideal environments in which to grow pre-existing black holes. Further research into the (supermassive) star formation dynamics of rapidly collapsing haloes, with inhomogeneous metal distributions, is required to gain more insight into both supermassive star formation in early galaxies as well as early black hole growth.
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed-up in X rays and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at high redshift z>1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ~0.5-1 Gyr, and then abruptly declines due to quasar feedback; over the same timescale, (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation and is temporarily stored into a massive reservoir/proto-torus wherefrom it can be promptly accreted; (iii) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L_Edd< 4, particularly at the highest redshifts; (iv) for massive BHs the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the latter has retained enough gas, a phase of supply-limited accretion follows exponentially declining with a timescale of about 2 e-folding times. We show that the ratio of the FIR luminosity of the host galaxy to the bolometric luminosity of the AGN maps the various stages of the above sequence. Finally, we discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly-lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next generation X-ray instruments.
In powerful radio-quiet active galactic nuclei (AGN), black holes heavier than one billion solar masses form at a redshift ~1.5-2. Supermassive black holes in jetted radio-loud AGN seems to form earlier, at a redshift close to 4. The ratio of active radio-loud to radio-quiet AGN hosting heavy black holes is therefore a rather a strong function of redshift. We report on some recent evidence supporting this conclusion, gathered from the Burst Alert Telescope (BAT, onboard Swift) and by the Large Area Telescope (LAT, onboard Fermi). We suggest that the more frequent occurrence of relativistic jets in the most massive black holes at high redshifts, compared to later times, could be due to the average black hole spin being greater in the distant past, or else to the jet helping a fast accretion rate (or some combination of the two scenarios). We emphasize that the large total accretion efficiency of rapidly spinning black holes inhibits a fast growth, unless a large fraction of the available gravitational energy of the accreted mass is not converted into radiation, but used to form and maintain a powerful jet.
In many galactic nuclei, a nuclear stellar cluster (NSC) co-exists with a supermassive black hole (SMBH). In this work, we explore the idea that the NSC forms before the SMBH through the merger of several stellar clusters that may contain intermediate-mass black holes (IMBHs). These IMBHs can subsequently grow by mergers and accretion to form an SMBH. To check the observable consequences of this proposed SMBH seeding mechanism, we created an observationally motivated mock population of galaxies, in which NSCs are constructed by aggregating stellar clusters that may or may not contain IMBHs. We model the growth of IMBHs in the NSCs through gravitational wave (GW) mergers with other IMBHs and gas accretion. In the case of GW mergers, the merged BH can either be retained or ejected depending on the GW recoil kick it receives. The likelihood of retaining the merged BH increases if we consider growth of IMBHs in the NSC through gas accretion. We find that nucleated lower-mass galaxies ($rm M_{star} lesssim 10^{9} M_{odot}$; e.g. M33) have an SMBH seed occupation fraction of about 0.3 to 0.5. This occupation fraction increases with galaxy stellar mass and for more massive galaxies ($rm 10^{9} M_{odot} lesssim rm M_{star} lesssim 10^{11} M_{odot}$), it is between 0.5 and 0.8, depending on how BH growth is modelled. These occupation fractions are consistent with observational constraints. Furthermore, allowing for BH growth also allows us to reproduce the observed diversity in the mass range of SMBHs in the $rm M_{rm NSC} - M_{rm BH}$ plane.
Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of $sim 3 times 10^{7}~M_{odot}$, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of $lesssim 0.1$ pc and the galactic disk simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with $gtrsim 10^{4}~M_{odot}$ within $sim 2~{rm Myr}$. Only the massive cold clouds with $gtrsim 10^{3}~M_{odot}$ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. In addition, we investigate the dependence of cloud mass function on metallicity and ${rm H_{2}}$ abundance, and show that the cases with low metallicities ($lesssim 10^{-2}~Z_{odot}$) or high ${rm H_{2}}$ abundance ($gtrsim 10^{-3}$) cannot form massive cold clouds with $gtrsim 10^{3}~M_{odot}$.