No Arabic abstract
The interest in non-linear impulsive systems (NIS) has been growing due to its impact in application problems such as disease treatments (diabetes, HIV, influenza, among many others), where the control action (drug administration) is given by short-duration pulses followed by time periods of null values. Within this framework the concept of equilibrium needs to be extended (redefined) to allows the system to keep orbiting (between two consecutive pulses) in some state space regions out of the origin, according to usual objectives of most real applications. Although such regions can be characterized by means of a discrete-time system obtained by sampling the NIS at the impulsive times, no agreements have reached about their asymptotic stability (AS). This paper studies the asymptotic stability of control equilibrium orbits for NSI, based on the underlying discrete time system, in order to establish the conditions under which the AS for the latter leads to the AS for the former. Furthermore, based on the latter AS characterization, an impulsive Model Predictive Control (i-MPC) that feasibly stabilizes the non-linear impulsive system is presented. Finally, the proposed stable MPC is applied to two control problems of interest: the intravenous bolus administration of Lithium and the administration of antiretrovirals for HIV treatments.
In this paper, we propose a chance constrained stochastic model predictive control scheme for reference tracking of distributed linear time-invariant systems with additive stochastic uncertainty. The chance constraints are reformulated analytically based on mean-variance information, where we design suitable Probabilistic Reachable Sets for constraint tightening. Furthermore, the chance constraints are proven to be satisfied in closed-loop operation. The design of an invariant set for tracking complements the controller and ensures convergence to arbitrary admissible reference points, while a conditional initialization scheme provides the fundamental property of recursive feasibility. The paper closes with a numerical example, highlighting the convergence to changing output references and empirical constraint satisfaction.
We study safe, data-driven control of (Markov) jump linear systems with unknown transition probabilities, where both the discrete mode and the continuous state are to be inferred from output measurements. To this end, we develop a receding horizon estimator which uniquely identifies a sub-sequence of past mode transitions and the corresponding continuous state, allowing for arbitrary switching behavior. Unlike traditional approaches to mode estimation, we do not require an offline exhaustive search over mode sequences to determine the size of the observation window, but rather select it online. If the system is weakly mode observable, the window size will be upper bounded, leading to a finite-memory observer. We integrate the estimation procedure with a simple distributionally robust controller, which hedges against misestimations of the transition probabilities due to finite sample sizes. As additional mode transitions are observed, the used ambiguity sets are updated, resulting in continual improvements of the control performance. The practical applicability of the approach is illustrated on small numerical examples.
This paper deals with the stability analysis problem of discrete-time switched linear systems with ranged dwell time. A novel concept called L-switching-cycle is proposed, which contains sequences of multiple activation cycles satisfying the prescribed ranged dwell time constraint. Based on L-switching-cycle, two sufficient conditions are proposed to ensure the global uniform asymptotic stability of discrete-time switched linear systems. It is noted that two conditions are equivalent in stability analysis with the same $L$-switching-cycle. These two sufficient conditions can be viewed as generalizations of the clock-dependent Lyapunov and multiple Lyapunov function methods, respectively. Furthermore, it has been proven that the proposed L-switching-cycle can eventually achieve the nonconservativeness in stability analysis as long as a sufficiently long L-switching-cycle is adopted. A numerical example is provided to illustrate our theoretical results.
We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for the future $k$ time steps. We show that when the prediction window $k$ is sufficiently large, predictive control is input-to-state stable and achieves a dynamic regret of $O(lambda^k T)$, where $lambda < 1$ is a positive constant. This is the first dynamic regret bound on the predictive control of linear time-varying systems. Under more assumptions on the terminal costs, we also show that predictive control obtains the first competitive bound for the control of linear time-varying systems: $1 + O(lambda^k)$. Our results are derived using a novel proof framework based on a perturbation bound that characterizes how a small change to the system parameters impacts the optimal trajectory.
We present a data-driven model predictive control scheme for chance-constrained Markovian switching systems with unknown switching probabilities. Using samples of the underlying Markov chain, ambiguity sets of transition probabilities are estimated which include the true conditional probability distributions with high probability. These sets are updated online and used to formulate a time-varying, risk-averse optimal control problem. We prove recursive feasibility of the resulting MPC scheme and show that the original chance constraints remain satisfied at every time step. Furthermore, we show that under sufficient decrease of the confidence levels, the resulting MPC scheme renders the closed-loop system mean-square stable with respect to the true-but-unknown distributions, while remaining less conservative than a fully robust approach.