Do you want to publish a course? Click here

Computational efficient deep neural network with difference attention maps for facial action unit detection

73   0   0.0 ( 0 )
 Added by Kejun Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a computational efficient end-to-end training deep neural network (CEDNN) model and spatial attention maps based on difference images. Firstly, the difference image is generated by image processing. Then five binary images of difference images are obtained using different thresholds, which are used as spatial attention maps. We use group convolution to reduce model complexity. Skip connection and $text{1}times text{1}$ convolution are used to ensure good performance even if the network model is not deep. As an input, spatial attention map can be selectively fed into the input of each block. The feature maps tend to focus on the parts that are related to the target task better. In addition, we only need to adjust the parameters of classifier to train different numbers of AU. It can be easily extended to varying datasets without increasing too much computation. A large number of experimental results show that the proposed CEDNN is obviously better than the traditional deep learning method on DISFA+ and CK+ datasets. After adding spatial attention maps, the result is better than the most advanced AU detection method. At the same time, the scale of the network is small, the running speed is fast, and the requirement for experimental equipment is low.



rate research

Read More

Facial action unit (AU) detection and face alignment are two highly correlated tasks since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. Most existing AU detection works often treat face alignment as a preprocessing and handle the two tasks independently. In this paper, we propose a novel end-to-end deep learning framework for joint AU detection and face alignment, which has not been explored before. In particular, multi-scale shared features are learned firstly, and high-level features of face alignment are fed into AU detection. Moreover, to extract precise local features, we propose an adaptive attention learning module to refine the attention map of each AU adaptively. Finally, the assembled local features are integrated with face alignment features and global features for AU detection. Experiments on BP4D and DISFA benchmarks demonstrate that our framework significantly outperforms the state-of-the-art methods for AU detection.
Facial expressions are combinations of basic components called Action Units (AU). Recognizing AUs is key for developing general facial expression analysis. In recent years, most efforts in automatic AU recognition have been dedicated to learning combinations of local features and to exploiting correlations between Action Units. In this paper, we propose a deep neural architecture that tackles both problems by combining learned local and global features in its initial stages and replicating a message passing algorithm between classes similar to a graphical model inference approach in later stages. We show that by training the model end-to-end with increased supervision we improve state-of-the-art by 5.3% and 8.2% performance on BP4D and DISFA datasets, respectively.
Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the existing attention based AU detection works use prior knowledge to predefine fixed attentions or refine the predefined attentions within a small range, which limits their capacity to model various AUs. In this paper, we propose an end-to-end deep learning based attention and relation learning framework for AU detection with only AU labels, which has not been explored before. In particular, multi-scale features shared by each AU are learned firstly, and then both channel-wise and spatial attentions are adaptively learned to select and extract AU-related local features. Moreover, pixel-level relations for AUs are further captured to refine spatial attentions so as to extract more relevant local features. Without changing the network architecture, our framework can be easily extended for AU intensity estimation. Extensive experiments show that our framework (i) soundly outperforms the state-of-the-art methods for both AU detection and AU intensity estimation on the challenging BP4D, DISFA, FERA 2015 and BP4D+ benchmarks, (ii) can adaptively capture the correlated regions of each AU, and (iii) also works well under severe occlusions and large poses.
Spatio-temporal relations among facial action units (AUs) convey significant information for AU detection yet have not been thoroughly exploited. The main reasons are the limited capability of current AU detection works in simultaneously learning spatial and temporal relations, and the lack of precise localization information for AU feature learning. To tackle these limitations, we propose a novel spatio-temporal relation and attention learning framework for AU detection. Specifically, we introduce a spatio-temporal graph convolutional network to capture both spatial and temporal relations from dynamic AUs, in which the AU relations are formulated as a spatio-temporal graph with adaptively learned instead of predefined edge weights. Moreover, the learning of spatio-temporal relations among AUs requires individual AU features. Considering the dynamism and shape irregularity of AUs, we propose an attention regularization method to adaptively learn regional attentions that capture highly relevant regions and suppress irrelevant regions so as to extract a complete feature for each AU. Extensive experiments show that our approach achieves substantial improvements over the state-of-the-art AU detection methods on BP4D and especially DISFA benchmarks.
Most existing AU detection works considering AU relationships are relying on probabilistic graphical models with manually extracted features. This paper proposes an end-to-end deep learning framework for facial AU detection with graph convolutional network (GCN) for AU relation modeling, which has not been explored before. In particular, AU related regions are extracted firstly, latent representations full of AU information are learned through an auto-encoder. Moreover, each latent representation vector is feed into GCN as a node, the connection mode of GCN is determined based on the relationships of AUs. Finally, the assembled features updated through GCN are concatenated for AU detection. Extensive experiments on BP4D and DISFA benchmarks demonstrate that our framework significantly outperforms the state-of-the-art methods for facial AU detection. The proposed framework is also validated through a series of ablation studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا