No Arabic abstract
NarrowBand-Internet of Things (NB-IoT) is a new 3GPP radio access technology designed to provide better coverage for a massive number of low-throughput low-cost devices in delay-tolerant applications with low power consumption. To provide reliable connections with extended coverage, a repetition transmission scheme is introduced to NB-IoT during both Random Access CHannel (RACH) procedure and data transmission procedure. To avoid the difficulty in replacing the battery for IoT devices, the energy harvesting is considered as a promising solution to support energy sustainability in the NB-IoT network. In this work, we analyze RACH success probability in a self-powered NB-IoT network taking into account the repeated preamble transmissions and collisions, where each IoT device with data is active when its battery energy is sufficient to support the transmission. We model the temporal dynamics of the energy level as a birth-death process, derive the energy availability of each IoT device, and examine its dependence on the energy storage capacity and the repetition value. We show that in certain scenarios, the energy availability remains unchanged despite randomness in the energy harvesting. We also derive the exact expression for the RACH success probability of a {randomly chosen} IoT device under the derived energy availability, which is validated under different repetition values via simulations. We show that the repetition scheme can efficiently improve the RACH success probability in a light traffic scenario, but only slightly improves that performance with very inefficient channel resource utilization in a heavy traffic scenario.
Photovoltaic (PV) cells have the potential to serve as on-board power sources for low-power IoT devices. Here, we explore the use of perovskite solar cells to power Radio Frequency (RF) backscatter-based IoT devices with a few {mu}W power demand. Perovskites are suitable for low-cost, high-performance, low-temperature processing, and flexible light energy harvesting that hold the possibility to significantly extend the range and lifetime of current backscatter techniques such as Radio Frequency Identification (RFID). For these reasons, perovskite solar cells are prominent candidates for future low-power wireless applications. We report on realizing a functional perovskite-powered wireless temperature sensor with 4 m communication range. We use a 10.1% efficient perovskite PV module generating an output voltage of 4.3 V with an active area of 1.06 cm2 under 1 sun illumination, with AM 1.5G spectrum, to power a commercial off-the-shelf RFID IC, requiring 10 - 45 {mu}W of power. Having an on-board energy harvester provides extra-energy to boost the range of the sensor (5x) in addition to providing energy to carry out high-volume sensor measurements (hundreds of measurements per min). Our evaluation of the prototype suggests that perovskite photovoltaic cells are able to meet the energy needs to enable fully autonomous low-power RF backscatter applications of the future. We conclude with an outlook into a range of applications that we envision to leverage the synergies offered by combining perovskite photovoltaics and RFID.
Narrowband Internet of Things (NB-IoT) is a recent addition to the 3GPP standards offering low power wide area networking (LP-WAN) for a massive amount of IoT devices communicating at low data rates in the licensed bands. As the number of deployed NB-IoT devices worldwide increases, the question of energy-efficient real-world NB-IoT device and network operation that would maximize the device battery lifetime becomes crucial for NB-IoT service popularity and adoption. In this paper, we present a detailed energy consumption of an NB-IoT module obtained from a custom-designed NB-IoT platform from which a large amount of high time-resolution data is collected. We perform a detailed energy consumption analysis of each NB-IoT data transfer phase and discuss both the device and the network-side configurations that may affect the module energy consumption in each of the phases. Preliminary results and conclusions are put forth along with the discussion of ongoing and future study plans.
This paper investigates a full-duplex orthogonal-frequency-division multiple access (OFDMA) based multiple unmanned aerial vehicles (UAVs)-enabled wireless-powered Internet-of-Things (IoT) networks. In this paper, a swarm of UAVs is first deployed in three dimensions (3D) to simultaneously charge all devices, i.e., a downlink (DL) charging period, and then flies to new locations within this area to collect information from scheduled devices in several epochs via OFDMA due to potential limited number of channels available in Narrow Band IoT, i.e., an uplink (UL) communication period. To maximize the UL throughput of IoT devices, we jointly optimizes the UL-and-DL 3D deployment of the UAV swarm, including the device-UAV association, the scheduling order, and the UL-DL time allocation. In particular, the DL energy harvesting (EH) threshold of devices and the UL signal decoding threshold of UAVs are taken into consideration when studying the problem. Besides, both line-of-sight (LoS) and non-line-of-sight (NLoS) channel models are studied depending on the position of sensors and UAVs. The influence of the potential limited channels issue in NB-IoT is also considered by studying the IoT scheduling policy. Two scheduling policies, a near-first (NF) policy and a far-first (FF) policy, are studied. It is shown that the NF scheme outperforms FF scheme in terms of sum throughput maximization; whereas FF scheme outperforms NF scheme in terms of system fairness.
NarrowBand-Internet of Things (NB-IoT) is a new 3GPP radio access technology designed to provide better coverage for Low Power Wide Area (LPWA) networks. To provide reliable connections with extended coverage, a repetition transmission scheme and up to three Coverage Enhancement (CE) groups are introduced into NB-IoT during both Random Access CHannel (RACH) procedure and data transmission procedure, where each CE group is configured with different repetition values and transmission resources. To characterize the RACH performance of the NB-IoT network with three CE groups, this paper develops a novel traffic-aware spatio-temporal model to analyze the RACH success probability, where both the preamble transmission outage and the collision events of each CE group jointly determine the traffic evolution and the RACH success probability. Based on this analytical model, we derive the analytical expression for the RACH success probability of a randomly chosen IoT device in each CE group over multiple time slots with different RACH schemes, including baseline, back-off (BO), access class barring (ACB), and hybrid ACB and BO schemes (ACB&BO). Our results have shown that the RACH success probabilities of the devices in three CE groups outperform that of a single CE group network but not for all the groups, which is affected by the choice of the categorizing parameters.This mathematical model and analytical framework can be applied to evaluate the performance of multiple group users of other networks with spatial separations.
Simultaneous wireless information and power transfer (SWIPT) has recently gathered much research interest from both academia and industry as a key enabler of energy harvesting Internet-of-things (IoT) networks. Due to a number of growing use cases of such networks, it is important to study their performance limits from the perspective of physical layer security (PLS). With this intent, this work aims to provide a novel analysis of the ergodic secrecy capacity of a SWIPT system is provided for Rician and Nakagami-m faded communication links. For a realistic evaluation of the system, the imperfections of channel estimations for different receiver designs of the SWIPT-based IoT systems have been taken into account. Subsequently, the closedform expressions of the ergodic secrecy capacities for the considered scenario are provided and, then, validated through extensive simulations. The results indicate that an error ceiling appears due to imperfect channel estimation at high values of signal-to-noise ratio (SNR). More importantly, the secrecy capacity under different channel conditions stops increasing beyond a certain limit, despite an increase of the main link SNR. The in-depth analysis of secrecy-energy trade-off has also been performed and a comparison has been provided for imperfect and perfect channel estimation cases. As part of the continuous evolution of IoT networks, the results provided in this work can help in identifying the secrecy limits of IoT networks in the presence of multiple eavesdroppers.