No Arabic abstract
This paper investigates a full-duplex orthogonal-frequency-division multiple access (OFDMA) based multiple unmanned aerial vehicles (UAVs)-enabled wireless-powered Internet-of-Things (IoT) networks. In this paper, a swarm of UAVs is first deployed in three dimensions (3D) to simultaneously charge all devices, i.e., a downlink (DL) charging period, and then flies to new locations within this area to collect information from scheduled devices in several epochs via OFDMA due to potential limited number of channels available in Narrow Band IoT, i.e., an uplink (UL) communication period. To maximize the UL throughput of IoT devices, we jointly optimizes the UL-and-DL 3D deployment of the UAV swarm, including the device-UAV association, the scheduling order, and the UL-DL time allocation. In particular, the DL energy harvesting (EH) threshold of devices and the UL signal decoding threshold of UAVs are taken into consideration when studying the problem. Besides, both line-of-sight (LoS) and non-line-of-sight (NLoS) channel models are studied depending on the position of sensors and UAVs. The influence of the potential limited channels issue in NB-IoT is also considered by studying the IoT scheduling policy. Two scheduling policies, a near-first (NF) policy and a far-first (FF) policy, are studied. It is shown that the NF scheme outperforms FF scheme in terms of sum throughput maximization; whereas FF scheme outperforms NF scheme in terms of system fairness.
We investigate the joint uplink-downlink design for time-division-duplexing (TDD) and frequency-division-duplexing (FDD) multi-user systems aided by an intelligent reflecting surface (IRS). We formulate and solve a multi-objective optimization problem to maximize uplink and downlink rates as a weighted-sum problem (WSP) that captures the trade-off between achievable uplink and downlink rates. We propose a resource allocation design that optimizes the WSP by jointly optimizing the beamforming vectors, power control and IRS phase shifts where the same IRS configuration is used for assisting uplink and downlink transmissions. In TDD, the proposed IRS design reduces the overhead associated with IRS configuration and the need for quiet periods while updating the IRS. In addition, a joint IRS design is critical for supporting concurrent uplink and downlink transmissions in FDD. We investigate the effect of different user-weighting strategies and different parameters on the performance of the joint IRS design and the resultant uplink-downlink trade-off regions. In all FDD scenarios and some TDD scenarios, the joint design significantly outperforms the heuristic of using the IRS configuration optimized for uplink (respectively, downlink) to assist the downlink (respectively, uplink) transmissions and substantially bridges the gap to the upper bound of allowing different IRS configurations in uplink and downlink.
This paper considers a wireless networked control system (WNCS) consisting of a dynamic system to be controlled (i.e., a plant), a sensor, an actuator and a remote controller for mission-critical Industrial Internet of Things (IIoT) applications. A WNCS has two types of wireless transmissions, i.e., the sensors measurement transmission to the controller and the controllers command transmission to the actuator. In this work, we consider a practical half-duplex controller, which introduces a novel transmission-scheduling problem for WNCSs. A frequent scheduling of sensors transmission results in a better estimation of plant states at the controller and thus a higher quality of control command, but it leads to a less frequent/timely control of the plant. Therefore, considering the overall control performance of the plant in terms of its average cost function, there exists a fundamental tradeoff between the sensors and the controllers transmissions. We formulate a new problem to optimize the transmission-scheduling policy for minimizing the long-term average cost function. We derive the necessary and sufficient condition of the existence of a stationary and deterministic optimal policy that results in a bounded average cost in terms of the transmission reliabilities of the sensor-to-controller and controller-to-actuator channels. Also, we derive an easy-to-compute suboptimal policy, which notably reduces the average cost of the plant compared to a naive alternative-scheduling policy.
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV assisted wireless communication system. Specifically, we consider the UAVs are deployed as aerial base stations to serve ground users who move between different regions. We maximize the throughput of ground users in the downlink communication by optimizing the UAVs trajectories, while taking into account the impact of the user mobility, propulsion energy consumption, and UAVs mutual interference. We formulate the problem as a route selection problem in an acyclic directed graph. Each vertex represents a task associated with a reward on the average user throughput in a region-time point, while each edge is associated with a cost on the energy propulsion consumption during flying and hovering. For the centralized trajectory design, we first propose the shortest path scheme that determines the optimal trajectory for the single UAV case. We also propose the centralized route selection (CRS) scheme to systematically compute the optimal trajectories for the more general multiple-UAV case. Due to the NP-hardness of the centralized problem, we consider the distributed trajectory design that each UAV selects its trajectory autonomously and propose the distributed route selection (DRS) scheme, which will converge to a pure strategy Nash equilibrium within a finite number of iterations.
In this paper, we consider a single-cell multi-user orthogonal frequency division multiple access (OFDMA) network with one unmanned aerial vehicle (UAV), which works as an amplify-and-forward relay to improve the quality-of-service (QoS) of the user equipments (UEs) in the cell edge. Aiming to improve the throughput while guaranteeing the user fairness, we jointly optimize the communication mode, subchannel allocation, power allocation, and UAV trajectory, which is an NP-hard problem. To design the UAV trajectory and resource allocation efficiently, we first decompose the problem into three subproblems, i.e., mode selection and subchannel allocation, trajectory optimization, and power allocation, and then solve these subproblems iteratively. Simulation results show that the proposed algorithm outperforms the random algorithm and the cellular scheme.
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN under imperfect channel state information (CSI). We formulate a hybrid access point (HAP) transmission energy minimization problem by a joint design of time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient under the imperfect CSI and non-linear energy harvesting model. Due to the high coupling of optimization variables, this problem is a non-convex optimization problem, which is difficult to solve directly. In order to solve the above-mentioned challenging problems, the alternating optimization (AO) is applied to decouple the optimization variables to solve the problem. Specifically, through AO, time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient are divided into three sub-problems to be solved alternately. The difference-of-convex (DC) programming is applied to solve the non-convex rank-one constraint in solving the IRS energy reflection coefficient and information reflection coefficient. Numerical simulations verify the effectiveness of our proposed algorithm in reducing HAP transmission energy compared to other benchmarks.