No Arabic abstract
We propose a method to describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field. We apply the approach to the case of hyperfine interaction with axial symmetry, which can be solved exactly in a constant, appropriately oriented magnetic field. In order to treat the nonstationary dynamical problem, we modify the time-dependent Schrodinger equation through a change of representation that, by exploiting an instantaneous (adiabatic) basis makes the time-dependent Hamiltonian diagonal at any time instant. The solution of the transformed time-dependent Schrodinger in the form of chronologically ordered exponents with transparent pre-exponential coefficients is reported. This solution is highly simplified when an adiabatically varying magnetic field perturbs the system. The approach here proposed may be used for the perturbative treatment of other dynamical problems with no exact solution.
We present an experimental demonstration of closed-loop quantum parameter estimation in which real-time feedback is used to achieve robustness to modeling uncertainty. By performing broadband estimation of a magnetic field acting on hyperfine spins in a cold atom ensemble, we show that accuracy is not compromised by fluctuations in total atom number even though the measured signal in our canonical configuration depends only on the product of the field and atom number. This methodology could be essential for efforts to utilize conditional squeezing in spin-resonance measurements.
The explicit semiclassical treatment of logarithmic perturbation theory for the bound-state problem within the framework of the Dirac equation is developed. Avoiding disadvantages of the standard approach in the description of exited states, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues for the Yukawa potential containing the vector part as well as the scalar component are considered.
We present a new approach to describe statistics of the non-linear matter density field that exploits a degeneracy in the impact of different cosmological parameters on the linear matter power spectrum, $P_{rm L}(k)$, when expressed in Mpc units. We classify all cosmological parameters into two groups, shape parameters, which determine the shape of $P_{rm L}(k)$, and evolution parameters, which only affect its amplitude at any given redshift. We show that the time evolution of $P_{rm L}(k)$ in models with identical shape parameters but different evolution parameters can be mapped from one to the other by relabelling the redshifts that correspond to the same values of $sigma_{12}(z)$, defined as the RMS linear variance in spheres of radius $12,{rm Mpc}$. We use N-body simulations to show that the same evolution mapping relation can be applied to the non-linear power spectrum, the halo mass function, or the full density field with high accuracy. The deviations from the exact degeneracy are the result of the different structure formation histories experienced by each model to reach the same value of $sigma_{12}(z)$. This relation can be used to drastically reduce the number of parameters required to describe the cosmology dependence of the power spectrum. We show how this degeneracy can be exploited to speed up the inference of parameter constraints from cosmological observations. We also present a new design of an emulator of the non-linear power spectrum whose predictions can be adapted to an arbitrary choice of evolution parameters and redshift.
It is shown that by fitting a Markovian quantum master equation to the numerical solution of the time-dependent Schrodinger equation of a system of two spin-1/2 particles interacting with a bath of up to 34 spin-1/2 particles, the former can describe the dynamics of the two-spin system rather well. The fitting procedure that yields this Markovian quantum master equation accounts for all non-Markovian effects in as much the general structure of this equation allows and yields a description that is incompatible with the Lindblad equation.
The dynamics of single electron and nuclear spins in a diamond lattice with different 13C nuclear spin concentration is investigated. It is shown that coherent control of up to three individual nuclei in a dense nuclear spin cluster is feasible. The free induction decays of nuclear spin Bell states and single nuclear coherences among 13C nuclear spins are compared and analyzed. Reduction of a free induction decay time T2* and a coherence time T2 upon increase of nuclear spin concentration has been found. For diamond material with depleted concentration of nuclear spin, T2* as long as 30 microseconds and T2 of up to 1.8 ms for the electron spin has been observed. The 13C concentration dependence of T2* is explained by Fermi contact and dipolar interactions with nuclei in the lattice. It has been found that T2 decreases approximately as 1/n, where n is 13C concentration, as expected for an electron spin interacting with a nuclear spin bath.