Do you want to publish a course? Click here

Closed-loop Quantum Parameter Estimation: Spins in a Magnetic Field

99   0   0.0 ( 0 )
 Added by J. M. Geremia
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an experimental demonstration of closed-loop quantum parameter estimation in which real-time feedback is used to achieve robustness to modeling uncertainty. By performing broadband estimation of a magnetic field acting on hyperfine spins in a cold atom ensemble, we show that accuracy is not compromised by fluctuations in total atom number even though the measured signal in our canonical configuration depends only on the product of the field and atom number. This methodology could be essential for efforts to utilize conditional squeezing in spin-resonance measurements.



rate research

Read More

We study the effect of noise on the transport of a quantum state from a closed loop of $n-$sites with one of the sites as a sink. Using a discrete-time quantum walk dynamics, we demonstrate that the transport efficiency can be enhanced with noise when the number of sites in the loop is small and reduced when the number of sites in the loop grows. By using the concept of measurement induced disturbance we identify the regimes in which genuine quantum effects are responsible for the enhanced transport.
We present a general framework for sensitivity optimization in quantum parameter estimation schemes based on continuous (indirect) observation of a dynamical system. As an illustrative example, we analyze the canonical scenario of monitoring the position of a free mass or harmonic oscillator to detect weak classical forces. We show that our framework allows the consideration of sensitivity scheduling as well as estimation strategies for non-stationary signals, leading us to propose corresponding generalizations of the Standard Quantum Limit for force detection.
Quantum metrology holds the promise of an early practical application of quantum technologies, in which measurements of physical quantities can be made with much greater precision than what is achievable with classical technologies. In this review, we collect some of the key theoretical results in quantum parameter estimation by presenting the theory for the quantum estimation of a single parameter, multiple parameters, and optical estimation using Gaussian states. We give an overview of results in areas of current research interest, such as Bayesian quantum estimation, noisy quantum metrology, and distributed quantum sensing. We address the question how minimum measurement errors can be achieved using entanglement as well as more general quantum states. This review is presented from a geometric perspective. This has the advantage that it unifies a wide variety of estimation procedures and strategies, thus providing a more intuitive big picture of quantum parameter estimation.
We propose to use neural networks to estimate the rates of coherent and incoherent processes in quantum systems from continuous measurement records. In particular, we adapt an image recognition algorithm to recognize the patterns in experimental signals and link them to physical quantities. We demonstrate that the parameter estimation works unabatedly in the presence of detector imperfections which complicate or rule out Bayesian filter analyses.
In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cramer-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا