No Arabic abstract
We study quantum dynamics of a dark soliton in a one-dimensional Bose gas in an optical lattice within the truncated Wigner approximation. A previous work has revealed that in the absence of quantum fluctuations, dynamical stability of the dark soliton significantly depends on whether its phase kink is located at a lattice site or a link of two neighboring sites. It has also shown that the dark soliton is unstable in a regime of strong quantum fluctuations regardless of the phase-kink position. To bridge the gap between the classical and strongly quantum regimes, we investigate the dynamical stability of the dark soliton in a regime of weak quantum fluctuations. We find that the position dependence of the dynamical stability gradually diminishes and eventually vanishes as the strength of quantum fluctuations increases. This classical-to-quantum crossover of the soliton stability remains even in the presence of a parabolic trapping potential. We suggest that the crossover behavior can be used for experimentally diagnosing whether the instability of a dark soliton is due to quantum fluctuations or classical dynamical instability.
We study the quasiadiabatic dynamics of a one-dimensional system of ultracold bosonic atoms loaded in an optical superlattice. Focusing on a slow linear variation in time of the superlattice potential, the system is driven from a conventional Mott insulator phase to a superlattice-induced Mott insulator, crossing in between a gapless critical superfluid region. Due to the presence of a gapless region, a number of defects depending on the velocity of the quench appear. Our findings suggest a power-law dependence similar to the Kibble-Zurek mechanism for intermediate values of the quench rate. For the temporal ranges of the quench dynamics that we considered, the scaling of defects depends nontrivially on the width of the superfluid region.
Soliton hydrodynamics is an appealing tool to describe strong turbulence in low-dimensional systems. Strong turbulence in quasi-one dimensional spuerfluids, such as Bose-Einstein condensates, involves the dynamics of dark solitons and, therefore, the description of a statistical ensemble of dark-solitons, i.e. soliton gases, is necessary. In this work, we propose a phase-space (kinetic) description of dark-soliton gases, introducing a kinetic equation that is formally similar to the Vlasov equation in plasma physics. We show that the proposed kinetic theory can capture the dynamical features of soliton gases and show that it sustains an acoustic mode, a fact that we corroborate with the help of direct numerical simulations. Our findings motivate the investigation of the microscopic structure of out-of-equilibrium and turbulent regimes in low-dimensional superfluids.
We study an ultracold atomic gas with attractive interactions in a one-dimensional optical lattice. We find that its excitation spectrum displays a quantum soliton band, corresponding to $N$-particle bound states, and a continuum band of other, mostly extended, states. For a system of a finite size, the two branches are degenerate in energy for weak interactions, while a gap opens above a threshold value for the interaction strength. We find that the interplay between degenerate extended and bound states has important consequences for both static and dynamical properties of the system. In particular, the solitonic states turn out to be protected from spatial perturbations and random disorder. We discuss how such dynamics implies that our system effectively provides an example of a quantum many-body system that, with the variation of the bosonic lattice filling, crosses over from integrable non-ergodic to non-integrable ergodic dynamics, through non-integrable non-ergodic regimes.
We study a highly imbalanced Fermi gas in a one-dimensional optical lattice from the polaronic point of view. The time-evolving block decimationg algorithm is used to calculate the ground state and dynamics of the system. We find qualitatively similar polaronic behaviour as in the recent experiment by Schirotzek et al. cite{Schirotzek2009a} where radio-frequency spectroscopy was used to observe polarons in three-dimensional space. In the weakly interacting limit our exact results are in excellent agreement with a polaron ansatz, and in the strongly interacting limit the results match with an approximative solution of the Bethe ansatz, suggesting a crossover from a quasiparticle to a charge-density excitation regime.
We investigate the response to radio-frequency driving of an ultracold gas of attractively interacting fermions in a one-dimensional optical lattice. We study the system dynamics by monitoring the driving-induced population transfer to a third state, and the evolution of the momentum density and pair distributions. Depending on the frequency of the radio-frequency field, two different dynamical regimes emerge when considering the evolution of the third level population. One regime exhibits (off)resonant many-body oscillations reminiscent of Rabi oscillations in a discrete two-level system, while the other displays a strong linear rise. Within this second regime, we connect, via linear response theory, the extracted transfer rate to the system single-particle spectral function, and infer the nature of the excitations from Bethe ansatz calculations. In addition, we show that this radio-frequency technique can be employed to gain insights into this many-body system coupling mechanism away from equilibrium. This is done by monitoring the momentum density redistributions and the evolution of the pair correlations during the drive. Capturing such non-equilibrium physics goes beyond a linear response treatment, and is achieved here by conducting time-dependent matrix product state simulations.