Do you want to publish a course? Click here

Totally ergodic generalised matrix equilibrium states have the Bernoulli property

53   0   0.0 ( 0 )
 Added by Ian Morris
 Publication date 2020
  fields
and research's language is English
 Authors Ian D. Morris




Ask ChatGPT about the research

We show that every totally ergodic generalised matrix equilibrium state is psi-mixing with respect to the natural partition into cylinders and hence is measurably isomorphic to a Bernoulli shift in its natural extension. This implies that the natural extensions of ergodic generalised matrix equilibrium states are measurably isomorphic to Bernoulli processes extended by finite rotations. This resolves a question of Gatzouras and Peres in the special case of self-affine repelling sets with generic translations.



rate research

Read More

176 - J.-R. Chazottes , G. Keller 2020
Our goal is to present the basic results on one-dimensional Gibbs and equilibrium states viewed as special invariant measures on symbolic dynamical systems, and then to describe without technicalities a sample of results they allowed to obtain for certain differentiable dynamical systems. We hope that this contribution will illustrate the symbiotic relationship between ergodic theory and statistical mechanics, and also information theory.
152 - Han Yu 2021
Let $lambdain (1,sqrt{2}]$ be an algebraic integer with Mahler measure $2.$ A classical result of Garsia shows that the Bernoulli convolution $mu_lambda$ is absolutely continuous with respect to the Lebesgue measure with a density function in $L^infty$. In this paper, we show that the density function is continuous.
Let ${T^t}$ be a smooth flow with positive speed and positive topological entropy on a compact smooth three dimensional manifold, and let $mu$ be an ergodic measure of maximal entropy. We show that either ${T^t}$ is Bernoulli, or ${T^t}$ is isomorphic to the product of a Bernoulli flow and a rotational flow. Applications are given to Reeb flows.
150 - Peng Sun 2020
We explore an approach to the conjecture of Katok on intermediate entropies that based on uniqueness of equilibrium states, provided the entropy function is upper semi-continuous. As an application, we prove Katoks conjecture for Ma~ne diffeomorphisms.
We introduce the notion of localized topological pressure for continuous maps on compact metric spaces. The localized pressure of a continuous potential $varphi$ is computed by considering only those $(n,epsilon)$-separated sets whose statistical sums with respect to an $m$-dimensional potential $Phi$ are close to a given value $win bR^m$. We then establish for several classes of systems and potentials $varphi$ and $Phi$ a local version of the variational principle. We also construct examples showing that the assumptions in the localized variational principle are fairly sharp. Next, we study localized equilibrium states and show that even in the case of subshifts of finite type and Holder continuous potentials, there are several new phenomena that do not occur in the theory of classical equilibrium states. In particular, ergodic localized equilibrium states for Holder continuous potentials are in general not unique.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا