Do you want to publish a course? Click here

High-low pressure domain wall for the classical Toda lattice

121   0   0.0 ( 0 )
 Added by Christian Mendl
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the classical Toda lattice with domain wall initial conditions, for which left and right half lattice are in thermal equilibrium but with distinct parameters of pressure, mean velocity, and temperature. In the hydrodynamic regime the respective space-time profiles scale ballisticly. The particular case of interest is a jump from low to high pressure at uniform temperature and zero mean velocity. Thereby the scaling function for the average stretch (also free volume) is forced to change sign. By direct inspection, the hydrodynamic equations for the Toda lattice seem to be singular at zero stretch. In our contribution we report on numerical solutions and convincingly establish that nevertheless the self-similar solution exhibits smooth behavior.



rate research

Read More

The relativistic Toda lattice equation is decomposed into three Toda systems, the Toda lattice itself, Backlund transformation of Toda lattice and discrete time Toda lattice. It is shown that the solutions of the equation are given in terms of the Casorati determinant. By using the Casoratian technique, the bilinear equations of Toda systems are reduced to the Laplace expansion form for determinants. The $N$-soliton solution is explicitly constructed in the form of the Casorati determinant.
86 - V. Popkov , Doochul Kim 1997
Exact analyses are given for two three-dimensional lattice systems: A system of close-packed dimers placed in layers of honeycomb lattices and a layered triangular-lattice interacting domain wall model, both with nontrivial interlayer interactions. We show that both models are equivalent to a 5-vertex model on the square lattice with interlayer vertex-vertex interactions. Using the method of Bethe ansatz, a closed-form expression for the free energy is obtained and analyzed. We deduce the exact phase diagram and determine the nature of the phase transitions as a function of the strength of the interlayer interaction.
Domain wall theory (DWT) has proved to be a powerful tool for the analysis of one-dimensional transport processes. A simple version of it was found very accurate for the Totally Asymmetric Simple Exclusion Process (TASEP) with random sequential update. However, a general implementation of DWT is still missing in the case of updates with less fluctuations, which are often more relevant for applications. Here we develop an exact DWT for TASEP with parallel update and deterministic (p=1) bulk motion. Remarkably, the dynamics of this system can be described by the motion of a domain wall not only on the coarse-grained level but also exactly on the microscopic scale for arbitrary system size. All properties of this TASEP, time-dependent and stationary, are shown to follow from the solution of a bivariate master equation whose variables are not only the position but also the velocity of the domain wall. In the continuum limit this exactly soluble model then allows us to perform a first principle derivation of a Fokker-Planck equation for the position of the wall. The diffusion constant appearing in this equation differs from the one obtained with the traditional `simple DWT.
The entropic pressure in the vicinity of a two dimensional square lattice polygon is examined as a model of the entropic pressure near a planar ring polymer. The scaling of the pressure as a function of distance from the polygon and length of the polygon is determined and tested numerically.
The magnetic domain wall motion driven by a magnetic field is studied in (Ga,Mn)As and (Ga,Mn)(As,P) films of different thicknesses. In the thermally activated creep regime, a kink in the velocity curves and a jump of the roughness exponent evidence a dimensional crossover in the domain wall dynamics. The measured values of the roughness exponent zeta_{1d} = 0.62 +/- 0.02 and zeta_{2d} = 0.45 +/- 0.04 are compatible with theoretical predictions for the motion of elastic line (d = 1) and surface (d = 2) in two and three dimensional media, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا