Do you want to publish a course? Click here

CORAL: Colored structural representation for bi-modal place recognition

81   0   0.0 ( 0 )
 Added by Yiyuan Pan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Place recognition is indispensable for a drift-free localization system. Due to the variations of the environment, place recognition using single-modality has limitations. In this paper, we propose a bi-modal place recognition method, which can extract a compound global descriptor from the two modalities, vision and LiDAR. Specifically, we first build the elevation image generated from 3D points as a structural representation. Then, we derive the correspondences between 3D points and image pixels that are further used in merging the pixel-wise visual features into the elevation map grids. In this way, we fuse the structural features and visual features in the consistent bird-eye view frame, yielding a semantic representation, namely CORAL. And the whole network is called CORAL-VLAD. Comparisons on the Oxford RobotCar show that CORAL-VLAD has superior performance against other state-of-the-art methods. We also demonstrate that our network can be generalized to other scenes and sensor configurations on cross-city datasets.



rate research

Read More

Recently, the methods based on Convolutional Neural Networks (CNNs) have gained popularity in the field of visual place recognition (VPR). In particular, the features from the middle layers of CNNs are more robust to drastic appearance changes than handcrafted features and high-layer features. Unfortunately, the holistic mid-layer features lack robustness to large viewpoint changes. Here we split the holistic mid-layer features into local features, and propose an adaptive dynamic time warping (DTW) algorithm to align local features from the spatial domain while measuring the distance between two images. This realizes viewpoint-invariant and condition-invariant place recognition. Meanwhile, a local matching DTW (LM-DTW) algorithm is applied to perform image sequence matching based on temporal alignment, which achieves further improvements and ensures linear time complexity. We perform extensive experiments on five representative VPR datasets. The results show that the proposed method significantly improves the CNN-based methods. Moreover, our method outperforms several state-of-the-art methods while maintaining good run-time performance. This work provides a novel way to boost the performance of CNN methods without any re-training for VPR. The code is available at https://github.com/Lu-Feng/STA-VPR.
We propose a methodology for robust, real-time place recognition using an imaging lidar, which yields image-quality high-resolution 3D point clouds. Utilizing the intensity readings of an imaging lidar, we project the point cloud and obtain an intensity image. ORB feature descriptors are extracted from the image and encoded into a bag-of-words vector. The vector, used to identify the point cloud, is inserted into a database that is maintained by DBoW for fast place recognition queries. The returned candidate is further validated by matching visual feature descriptors. To reject matching outliers, we apply PnP, which minimizes the reprojection error of visual features positions in Euclidean space with their correspondences in 2D image space, using RANSAC. Combining the advantages from both camera and lidar-based place recognition approaches, our method is truly rotation-invariant, and can tackle reverse revisiting and upside down revisiting. The proposed method is evaluated on datasets gathered from a variety of platforms over different scales and environments. Our implementation and datasets are available at https://git.io/image-lidar
73 - Huan Yin , Xuecheng Xu , Yue Wang 2021
Place recognition is critical for both offline mapping and online localization. However, current single-sensor based place recognition still remains challenging in adverse conditions. In this paper, a heterogeneous measurements based framework is proposed for long-term place recognition, which retrieves the query radar scans from the existing lidar maps. To achieve this, a deep neural network is built with joint training in the learning stage, and then in the testing stage, shared embeddings of radar and lidar are extracted for heterogeneous place recognition. To validate the effectiveness of the proposed method, we conduct tests and generalization experiments on the multi-session public datasets compared to other competitive methods. The experimental results indicate that our model is able to perform multiple place recognitions: lidar-to-lidar, radar-to-radar and radar-to-lidar, while the learned model is trained only once. We also release the source code publicly: https://github.com/ZJUYH/radar-to-lidar-place-recognition.
70 - Lin Wu , Teng Wang , Changyin Sun 2021
Visual place recognition is one of the essential and challenging problems in the fields of robotics. In this letter, we for the first time explore the use of multi-modal fusion of semantic and visual modalities in dynamics-invariant space to improve place recognition in dynamic environments. We achieve this by first designing a novel deep learning architecture to generate the static semantic segmentation and recover the static image directly from the corresponding dynamic image. We then innovatively leverage the spatial-pyramid-matching model to encode the static semantic segmentation into feature vectors. In parallel, the static image is encoded using the popular Bag-of-words model. On the basis of the above multi-modal features, we finally measure the similarity between the query image and target landmark by the joint similarity of their semantic and visual codes. Extensive experiments demonstrate the effectiveness and robustness of the proposed approach for place recognition in dynamic environments.
In the field of large-scale SLAM for autonomous driving and mobile robotics, 3D point cloud based place recognition has aroused significant research interest due to its robustness to changing environments with drastic daytime and weather variance. However, it is time-consuming and effort-costly to obtain high-quality point cloud data for place recognition model training and ground truth for registration in the real world. To this end, a novel registration-aided 3D domain adaptation network for point cloud based place recognition is proposed. A structure-aware registration network is introduced to help to learn features with geometric information and a 6-DoFs pose between two point clouds with partial overlap can be estimated. The model is trained through a synthetic virtual LiDAR dataset through GTA-V with diverse weather and daytime conditions and domain adaptation is implemented to the real-world domain by aligning the global features. Our results outperform state-of-the-art 3D place recognition baselines or achieve comparable on the real-world Oxford RobotCar dataset with the visualization of registration on the virtual dataset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا