Do you want to publish a course? Click here

Resummation effects in weak SUSY processes

140   0   0.0 ( 0 )
 Added by Juri Fiaschi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present updated results for the production cross sections of slepton pairs and neutralino-chargino pairs at the LHC with next-to-next-to logarithmic precision matched at approximate QCD next-to-next-to leading order. The explored range of masses of the supersymmetric particles are chosen to be relevant for current and future searches at the LHC. We find moderate increases in the invariant mass distributions and integrated cross sections, and substantial reductions in the scale uncertainty of the results.



rate research

Read More

217 - G. Camici , M. Ciafaloni 1995
We investigate small$-x$ resummation effects in QCD coefficient functions for $Z_0g$ and $Wg$ fusion processes, and we compare them with the known ones of $gamma g$ type. We find a strong process dependence, that we argue to be due to the possible presence of collinear singularities for either small or large $k$ of the exchanged gluon. For top quark production, we find that the $ggra tbar{t}$ and $Z_0gra tbar{t}$ channels have larger resummation enhancements than the $Wgra tbar{t}$ one.
126 - T. Fritzsche , W. Hollik 2004
Strategy and results for complete one-loop computations in the Minimal Supersymmetric Standard Model are reviewed, with applications to the calculation of SUSY mass spectra and SUSY-particle processes. Determination of renormalization constants and counterterms are described in the on-shell renormalization scheme, and a translation between $bar{rm DR}$ and on-shell parameters is given. As an example, cross sections for chargino and neutralino pair production in $e^+e^-$ annihilation are presented, complete at the one-loop level.
154 - S. Dawson , T. Han , W. K. Lai 2012
Fixed-order QCD radiative corrections to the vector-boson and Higgs associated production channels, pp -> VH (V=W, Z), at hadron colliders are well understood. We combine higher order perturbative QCD calculations with soft-gluon resummation of both threshold logarithms and logarithms which are important at low transverse momentum of the VH pair. We study the effects of both types of logarithms on the scale dependence of the total cross section and on various kinematic distributions. The next-to-next-to-next-to-leading logarithmic (NNNLL) resummed total cross sections at the LHC are almost identical to the fixed-order perturbative next-to-next-to-leading order (NNLO) rates, indicating the excellent convergence of the perturbative QCD series. Resummation of the VH transverse momentum (p_T) spectrum provides reliable results for small values of p_T and suggests that implementing a jet-veto will significantly decrease the cross sections.
We develop methods for resummation of instanton lattice series. Using these tools, we investigate the consequences of the Weak Gravity Conjecture for large-field axion inflation. We find that the Sublattice Weak Gravity Conjecture implies a constraint on the volume of the axion fundamental domain. However, we also identify conditions under which alignment and clockwork constructions, and a new variant of N-flation that we devise, can evade this constraint. We conclude that some classes of low-energy effective theories of large-field axion inflation are consistent with the strongest proposed form of the Weak Gravity Conjecture, while others are not.
85 - U. Baur 2006
The O(alpha) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(alpha) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(alpha) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, t-bar t, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(alpha) virtual weak radiative corrections partially cancel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا